Coexistence of Cell Assemblies and STDP

  • Florian Hauser
  • David Bouchain
  • Günther Palm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5768)


We implement a model of leaky-integrate-and fire neurons with conductance-based synapses. Neurons are structurally coupled in terms of an ideal cell assembly. Synaptic changes occur through parameterized spike timing-dependent plasticity rules which allows us to investigate the question whether cell assemblies can survive or even be strengthed by such common learning rules. It turns out that for different delays there are parameter settings which support cell assembly structures and others which do not.


Cell Assembly Synaptic Weight Synaptic Strength Spike Generation Hebbian Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hebb, D.O.: The Organization of Behavior. Wiley, Chichester (1949)Google Scholar
  2. 2.
    Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational models of working memory. Nat. Neurosc. 3, 1184–1191 (2000)CrossRefGoogle Scholar
  3. 3.
    Palm, G.: Neural Assemblies: An Alternative Approach to Artificial Intelligence. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  4. 4.
    Markert, H.: Neural Associative Memories for Language Understanding and Robot Control. PhD thesis, Ulm University (2008)Google Scholar
  5. 5.
    Lmo, T.: The discovery of long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 617–620 (2003)CrossRefGoogle Scholar
  6. 6.
    Bi, Q.Q., Poo, M.M.: Synaptic modification in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosc. 18, 10464–10474 (1998)Google Scholar
  7. 7.
    Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosc. 3(9), 919–926 (2000)CrossRefGoogle Scholar
  8. 8.
    Rossum, M.C.W., Bi, Q.Q., Turrigiano, G.G.: Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosc. 20, 8812–8821 (2000)Google Scholar
  9. 9.
    Burkitt, A.N., Gilson, M., van Hemmen, J.L.: Spike-timing-dependent plasticity for neurons with recurrent connections. Biol. Cyb. 96, 533–546 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hosaka, R., Araki, O., Ikeguchi, T.: STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neur. Comp. 20, 415–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  12. 12.
    Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic plasticity based on spike timing. Biol. Cyb. 98, 459–478 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dan, Y., Poo, M.M.: Spike timing-dependent plasticity: From synapse to perception. Physiol. Rev. 86, 1033–1048 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Hauser
    • 1
  • David Bouchain
    • 1
  • Günther Palm
    • 1
  1. 1.Institute of Neural Information ProcessingUlm UniversityGermany

Personalised recommendations