Skip to main content

Modeling D st  with Recurrent EM Neural Networks

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

Abstract

Recurrent Neural Networks have been used extensively for space weather forecasts of geomagnetospheric disturbances. One of the major drawbacks for reliable forecasts have been the use of training algorithms that are unable to account for model uncertainty and noise in data. We propose a probabilistic training algorithm based on the Expectation Maximization framework for parameterization of the model which makes use of a forward filtering and backward smoothing Expectation step, and a Maximization step in which the model uncertainty and measurement noise estimates are computed. Through numerical experimentation it is shown that the proposed model allows for reliable forecasts and also outperforms other neural time series models trained with the Extended Kalman Filter, and gradient descent learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axford, W.I., Hines, C.O.: A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1961)

    Article  MathSciNet  Google Scholar 

  2. de Freitas, J.F.G., Niranjan, M., Gee, A.H.: Dynamic Learning with the EM Algorithm for Neural Networks. J. Vlsi. Signal. Proc. 26, 119–131 (2000)

    Article  MATH  Google Scholar 

  3. Dungey, J.W.: Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 26, 47–48 (2000)

    Google Scholar 

  4. Freeman, J., Natal, A., Reiff, P., Denig, W., Gussenhoven-Shea, S., Heinemann, M., Rich, F., Hairston, M.: The use of neural networks to predict magnetospheric parameters for input to a magnetospheric forecast model. In: Proceedings of Artificial Intelligence Applications in Solar-Terrestrial Physics Workshop, pp. 167–181 (1993)

    Google Scholar 

  5. Gonzales, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792 (1994)

    Article  Google Scholar 

  6. Ghahramani, Z., Hinton, G.E.: Parameter estimation for linear dynamical systems. Technical Report, University of Toronto CRG-TR-96-2 (1996)

    Google Scholar 

  7. Lundstedt, H.: Neural Networks and prediction of solar-terrestrial effects. Planet. Space Sci. 40, 457–464 (1992)

    Article  Google Scholar 

  8. Lundstedt, H., Wintoft, P.: Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann Geophys. 12, 19–24 (1994)

    Article  Google Scholar 

  9. Lundstedt, H., Gleisner, H., Wintoft, P.: Operational forecasts of the geomagnetic Dst index. Geophys. Res. Lett. 29(24), 34–1–34–4 (2002)

    Google Scholar 

  10. Pallocchia, G., Amata, E., Consolini, G., Marcucci, M.F., Bertello, I.: Geomagnetic Dst index forecast based on IMF data only. Ann. Geophys. 24, 989–999 (2006)

    Article  Google Scholar 

  11. Puskorius, G.V., Feldkamp, L.A.: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE T Neural Networks 5(2), 279–297 (1994)

    Article  Google Scholar 

  12. Rauch, H.E., Tung, F., Striebel, C.T.: Maximum Likelihood Estimates of Linear Dynamic Models. AIAA Journal 3(8), 1445–1450 (1965)

    Article  Google Scholar 

  13. Schottky, B., Saad, D.: Statistical mechanics of EKF learning in neural networks. J. Phys. A 32(9), 1605–1621 (1999)

    Article  MATH  Google Scholar 

  14. Shumway, R.H., Stoffer, D.S.: An Approach To Time Series Smoothing and Forecasting Using the EM Algorithm. J. Time Ser. Anal. 4, 253–264 (1982)

    Article  MATH  Google Scholar 

  15. Wei, H.L., Bilings, S.A., Balikhin, M.A.: Prediction of the Dst index using multiresolution wavelet models. J. Geophys. Res. 109(A7), A07212 (2004)

    Google Scholar 

  16. W.H.L., Bilings, S.A., Balikhin, M.A.: Forecasting the Geomagnetic Activity of teh Dst index using Multiscale Radial Basis Function Networks. In: Advances in Space Research, vol. 40, pp. 1863–1870 (2007)

    Google Scholar 

  17. Wu, J.G., Lundstedt, H.: Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks. J. Geophys. Res. 102(A7), 14–255 (1997)

    Google Scholar 

  18. Williams, R.J., Zipser, D.: A learning algorithm for continuously running fully connected recurrent neural networks. Neural Computation 1, 270–280 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirikitani, D.T., Ouarbya, L. (2009). Modeling D st  with Recurrent EM Neural Networks. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics