Skip to main content

A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems

  • Conference paper
Cooperative Design, Visualization, and Engineering (CDVE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5738))

Abstract

Collaborative work using groupware systems is a dynamic process in which many tasks, in different application domains, are carried out. Currently, one of the biggest challenges in the field of CSCW (Computer-Supported Cooperative Work) research is to establish conceptual models which allow for the analysis of collaborative activities and their resulting products. In this article, we propose an ontology that conceptualizes the required elements which enable an analysis to infer a set of analysis indicators, thus evaluating both the individual and group work and the artefacts which are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avouris, N., Komis, V., Fiotakis, G., Dimitracopoulou, A., Margaritis, M.: Method and Tools for analysis of collaborative problem-solving activities. In: First International Workshop on Activity Theory Based Practical Methods for IT Design, Copenhagen, pp. 5–16 (2004)

    Google Scholar 

  2. Babič, F., Wagner, J., Paralič, J.: The Role of Ontologies in Collaborative Systems. In: the 6th Slovakian - International Symposium on Applied Machine Intelligence, Herľany, Slovakia, pp. 119–124 (2008)

    Google Scholar 

  3. Barros, B., Verdejo, M.F., Read, T., Mizoguchi, R.: Applications of a collaborative learning ontology. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 301–310. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bravo, C., Redondo, M.A., Verdejo, M.F., Ortega, M.: Framework for Process and Solution Analysis in Synchronous Collaborative Learning Environments. International Journal of Human-Computer Studies 66(11), 812–832 (2008)

    Article  Google Scholar 

  5. Dimitrakopoulou, A., et al.: State of the Art on Interaction Analysis: Interaction Analysis Indicators. Kaleidoscope Network of Excelence. Interaction & Collaboration Analysis Supporting Teachers and Students’ Self-Regulation. Jointly Executed Integrated Research Project. Deliverable D.26.1 (2004)

    Google Scholar 

  6. Dourish, P.: Process Descriptions as Organisational Accounting Devices: The Dual Use of Workflow Technologies. In: The ACM International Conference on Supporting Group Work, Boulder, Colorado, pp. 52–60 (2001)

    Google Scholar 

  7. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An ontologically well-founded profile for UML conceptual models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kleef, R., de Moor, A.: Communication process analysis in virtual communities on sustainable development. In: Scharl, A. (ed.) Environmental online communication. Springer, Berlin (2004)

    Google Scholar 

  9. Martínez, A., de la Fuente, P., Dimitriadis, Y.: Towards an XML-based representation of collaborative interaction. In: Watson, B., Ludvigsen, S., Hoppe, U. (eds.) Proceedings of the International Conference on Computer Support for Collaborative Learning, pp. 379–384. Kluwer Academic Publishers, Bergen (2003)

    Google Scholar 

  10. Schmidt, K., Bannon, L.: Taking CSCW seriously: Supporting articulation work. Computer Supported Cooperative Work (CSCW), An International Journal 1(1-2), 7–40 (1992)

    Article  Google Scholar 

  11. Soller, A., Martínez-Monés, A., Jermann, P., Muehlenbrock, M.: From Mirroring to Guiding: A Review of State of the Art Technology for Supporting Collaborative Learning. International Journal of Artificial Intelligence in Education 15(4), 261–290 (2005)

    Google Scholar 

  12. Takeuchi, M., Hayashi, Y., Ikeda, M., Mizoguchi, R.: A Collaborative Learning Design Environment to Integrate Practice and Learning based on Collaborative Space Ontology and Patterns. In: The 8th International Conference on Intelligent Tutoring Systems, Jhongli, Taiwan, pp. 187–196 (2006)

    Google Scholar 

  13. Tam, J., Greenberg, S.: A Framework for Asynchronous Change Awareness. Collaborative Documents and Workspaces. International Journal of Human Computer Studies 64(7), 583–598 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duque, R., Bravo, C., Ortega, M. (2009). A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2009. Lecture Notes in Computer Science, vol 5738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04265-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04265-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04264-5

  • Online ISBN: 978-3-642-04265-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics