Skip to main content

Green's Function Methods for Phonon Transport Through Nano-Contacts

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 118))

Abstract

Formulations of the phonon transport problem depend on the length scale of interest. At the bottom end of the scale is the atomistic description. There are fundamental reasons for going to the atomic description level. One is that atomistic calculations can be used to extract parameters that are needed for coarser-grained descriptions. For example, descriptions like the equation of phonon radiative transfer [1,2], or at a coarser level, the heat diffusion equation, need to be provided with magnitudes such as interface thermal resistance and local thermal conductivity tensors. To obtain such local properties, atomistic approaches have been developed. Some examples are the Kubo formula for molecular dynamics, which yields the bulk thermal conductivity [3], the Allen–Feldman approach for the thermal conductivity of amorphous solids [4], and the method of lattice dynamics for interface thermal resistance [5–7].

In many cases, experimental validation of these local properties can only be carried out indirectly, by measurements on macroscopic samples. Nevertheless, experimental techniques have recently been developed that allow local thermal transportmeasurements on sampleswith characteristic dimensions in the sub-micrometer range [8–10]. Such ‘local probe’ experiments are generally based on measuring the heat flow across a nanoscale object linking two heat reservoirs which are kept at two different temperatures (see Fig. 3.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Majumdar: J. Heat Transfer 115, 7 (1993)

    Article  Google Scholar 

  2. R. Prasher: Appl. Phys. Lett. 83, 48 (2003)

    Article  ADS  Google Scholar 

  3. A.J.C. Ladd, B. Moran, and W.G. Hoover: Phys. Rev. B 34, 5058 (1986)

    Article  ADS  Google Scholar 

  4. P.B. Allen and J.L. Feldman: Phys. Rev. B 48, 12581 (1993)

    Article  ADS  Google Scholar 

  5. D.A. Young and H.J. Maris: Phys. Rev. B 40, 3685 (1989)

    Article  ADS  Google Scholar 

  6. S. Pettersson and G.D. Mahan: Phys. Rev. B 42, 7386–7390 (1990)

    Article  ADS  Google Scholar 

  7. J. Wang and J.S. Wang: cond-mat/0509092

    Google Scholar 

  8. K. Schwab, E.A. Henriksen, J.M. Worlock, and M.L. Roukes: Nature 404, 974 (2000)

    Article  ADS  Google Scholar 

  9. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen: Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  10. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar: Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  11. P.K. Schelling, S.R. Phillpot, and P. Keblinski: Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  12. E.N. Economou: Green’s Functions in Quantum Physics, Springer-Verlag, Berlin (1983)

    Google Scholar 

  13. N. Mingo, D.A. Stewart, D.A. Broido, and D. Srivastava: Phys. Rev. B 77, 033418 (2008)

    Article  ADS  Google Scholar 

  14. F. Guinea, C. Tejedor, F. Flores, and E. Louis: Phys. Rev. B 28, 4397 (1983)

    Article  ADS  Google Scholar 

  15. M. Lannoo and P. Friedel: Atomic and Electronic Structure of Surfaces, Springer (1991)

    Google Scholar 

  16. R. Haydock, V. Heine, and M.J. Kelly: J. Phys. C: Solid State Phys. 5, 2845 (1972)

    Article  ADS  Google Scholar 

  17. W. Zhang, N. Mingo, and T.S. Fisher: Journal of Heat Transfer (accepted, 2006)

    Google Scholar 

  18. J.C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero: Phys. Rev. Lett. 80, 1066 (1998)

    Article  ADS  Google Scholar 

  19. J. Bardeen: Phys. Rev. Lett. 57, 6 (1961)

    Google Scholar 

  20. M.P. Blencowe: Phys. Rev. B 59, 4992 (1999)

    Article  ADS  Google Scholar 

  21. G.P. Srivastava: The Physics of Phonons, Adam Hilger, Bristol (1990)

    Google Scholar 

  22. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar: Nano. Lett. 5, 1842–1846 (2005)

    Article  ADS  Google Scholar 

  23. E. Pop, D. Mann, Q. Wang, K.E. Goodson, and H. Dai: Nano Letters 6, 96 (2006)

    Article  ADS  Google Scholar 

  24. J.B. Pendry: J. Phys. A 16, 2161 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. L.G.C. Rego and G. Kirczenow: Phys. Rev. Lett. 81, 232 (1998)

    Article  ADS  Google Scholar 

  26. R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998)

    Book  Google Scholar 

  27. G.D. Mahan and G.S. Jeon: Phys. Rev. B 70, 075405 (2004)

    Article  ADS  Google Scholar 

  28. J. Maultzsch, S. Reich, C. Thomsen, E. Dobardžić, I. Milošević, and M. Damjanović: Sol. State Commun. 121, 471 (2002)

    Article  ADS  Google Scholar 

  29. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, and P. Ordejón: Phys. Rev. B 59, 12678 (1999)

    Article  ADS  Google Scholar 

  30. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, and G. Dresselhaus: Chem. Phys. Lett. 209, 77 (1993)

    Article  ADS  Google Scholar 

  31. N. Mingo and D.A. Broido: Nano Lett. 5, 1221–1225 (2005)

    Article  ADS  Google Scholar 

  32. M.G. Holland, C.A. Klein, and W.D. Straub: J. Phys. Chem. Solids 27, 903 (1966)

    Article  ADS  Google Scholar 

  33. B.T. Kelly: Physics of Graphite, Applied Science Publishers, London (1981)

    Google Scholar 

  34. C.A. Klein and M.G. Holland: Phys. Rev. 136, A575 (1964)

    Article  ADS  Google Scholar 

  35. For [32], the crystallite length can be estimated to be about 5 micrometers

    Google Scholar 

  36. S. Berber, Y-K. Kwon, and D. Tománek: Phys. Rev. Lett. 84, 4613 (2000)

    Google Scholar 

  37. N. Mingo and L. Yang: Phys. Rev. B 68, 245406 (2003)

    Article  ADS  Google Scholar 

  38. L.V. Keldysh: Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  39. K.T. Mahanthappa: Phys. Rev. 126, 329 (1961); P.M. Baksi and K.T. Mahanthappa: J. Math. Phys. 4, 1 (1963); Ibid. 4, 12 (1963)

    Google Scholar 

  40. E.M. Lifshitz and L.P. Pitaevskii: Physical Kinetics, Course of Theoretical Physics, Vol. 10, Pergamon Press, Oxford (1981)

    Google Scholar 

  41. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1995)

    Google Scholar 

  42. R. Combescot: J. Phys. C 4, 2611 (1971)

    Article  ADS  Google Scholar 

  43. E.V. Anda and F. Flores: J. Phys. Cond. Matter 2, 8023 (1991)

    Google Scholar 

  44. Y. Meir and N.S. Wingreen: Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  45. K. Makoshi and T. Mii: Surf. Sci. 357358, 335 (1995)

    Google Scholar 

  46. L.E. Henrickson: J. Appl. Phys. 91, 6273 (2002)

    Article  ADS  Google Scholar 

  47. D.A. Stewart and F. Leonard: Phys. Rev. Lett. 93, 107401 (2004)

    Article  ADS  Google Scholar 

  48. M. Galperin and A. Nitzan: Phys. Rev. Lett. 95, 206802 (2005)

    Article  ADS  Google Scholar 

  49. J.E. Lennard-Jones: Proceedings of the Physical Society 43, 461–482 (1931)

    Article  MATH  ADS  Google Scholar 

  50. F. Stillinger and T.A. Weber: Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  51. N.W. Ashcroft and N.D. Mermin: Solid State Physics, Harcourt (1976)

    Google Scholar 

  52. A. Kambili, G. Fagas, V.I. Fal’ko, and C.J. Lambert: Phys. Rev. B 60, 15593 (1999)

    Article  ADS  Google Scholar 

  53. D.H. Santamore and M.C. Cross: Phys. Rev. B 63, 184306 (2001); D.H. Santamore and M.C. Cross: Phys. Rev. B 66, 144302 (2002); D.H. Santamore and M.C. Cross: Phys. Rev. Lett. 87, 115502 (2001); M.C. Cross and R. Lifshitz: Phys. Rev. B 64, 085324 (2001)

    Google Scholar 

  54. D.E. Angelescu, M.C. Cross, and M.L. Roukes: Superlattices and Microstruct. 23, 673 (1998)

    Article  ADS  Google Scholar 

  55. A. Ozpineci and S. Ciraci: Phys. Rev. B 63, 125415 (2001); A. Buldum, S. Ciraci, and C.Y. Fong: J. Phys.: Condens. Matter 12, 3349 (2000); S. Ciraci, A. Buldum, and I.P. Batra: ibid. 13, R537 (2001)

    Google Scholar 

  56. G. Fagas, A.G. Kozorezov, C.J. Lambert, and J.K. Wigmore: Phys. Rev. B 60, 6459 (1999)

    Article  ADS  Google Scholar 

  57. D. Segal, A. Nitzan, and P. Hänggi: J. Chem. Phys. 119, 6840 (2003)

    Article  ADS  Google Scholar 

  58. D.M. Leitner and P.G. Wolynes: Phys. Rev. E 61, 2902 (2000)

    Article  ADS  Google Scholar 

  59. K.R. Patton and M.R. Geller: Phys. Rev. B, 64 155320 (2001)

    Article  ADS  Google Scholar 

  60. C.-M. Chang and M.R. Geller: Phys. Rev. B 71, 125304 (2005)

    Article  ADS  Google Scholar 

  61. O. Dubay and G. Kresse: Phys. Rev. B 67, 035401 (2003)

    Article  ADS  Google Scholar 

  62. S.Y. Wu, J. Cocks, and C.S. Jayanthi: Phys. Rev. B 49, 7957 (1994)

    Article  ADS  Google Scholar 

  63. P.K. Schelling, S.R. Phillpot, and P. Keblinski: Appl. Phys. Lett. 80, 2484 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I wish to thank Prof. D.A. Broido from Boston College for his collaboration in several results shown in Sect. 3.2.5, and for invaluable advice throughout this work. I am very grateful to Dr. Wei Zhang and Prof. T.S. Fisher, from Purdue University, for fruitful and enthusiastic scientific discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mingo, N. (2009). Green's Function Methods for Phonon Transport Through Nano-Contacts. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics