Skip to main content

Nanostructures

  • Chapter
  • First Online:
Thermal Nanosystems and Nanomaterials

Part of the book series: Topics in Applied Physics ((TAP,volume 118))

Abstract

As stated in Chap. 1, when the size of a solid object becomes of the same order of magnitude as the mean free path of the energy carriers, heat transfer is no longer diffusive. The notion of thermal conductivity, defined by Fourier’s law for the diffusive regime, can then no longer be used. However, the thermal conductivity is such a common thermophysical parameter that this definition is still used when energy transport is non-diffusive. An equivalent thermal conductivity is then used which depends on the shape and size of the solid, the temperature, and the temperature gradient. The latter parameter is often not taken into account and this may be a source of error.

Nanostructures such as nanoparticles are of great interest in many applications. They are candidates for biomedical applications such as drug delivery and thermal treatment of cancer. They are used in nanofluids to improve convective heat transfer, with or without phase change (boiling, condensation). Nanotubes, nanowires, and nanofilms are widely considered in microelectronic applications as components, connecting wires [1], and sensors. Nanostructures are also of great help in physics for various experiments [2, 3]. Finally, all kinds of nanoparticles are used in nanocomposite materials. Most nanostructures are made of dielectric materials (mainly due to the importance of microelectronic applications), although some are made of electrically conducting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.C. Collins, M.S. Arnold, and P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292, 706 (2001)

    Article  ADS  Google Scholar 

  2. W. de Heer, A. Chatelain, and D. Ugarte: A carbon nanotube field-emission electron source, Science 270, 1179 (1995)

    Article  ADS  Google Scholar 

  3. J.M. Bonard, H. Kind, T. Stckli, and L. O Nilsson: Field emission from carbon nanotubes: The first five years, Solid State Electron. 45 (6), 893–914 (2001)

    Article  ADS  Google Scholar 

  4. C. Kittel: Introduction to Solid State Physics, 8th edn., John Wiley, Philiadelphia, 2004

    Google Scholar 

  5. N.W. Ashcroft and N.D. Mermin: Solid State Physics, International Edition, Saunders College, Philiadelphia, 1976

    Google Scholar 

  6. R. Turbino, L. Piseri, and G. Zerbi: Lattice dynamics and spectroscopic properties by a valence force potential of diamondlike crystals: C, Si, Ge, and Sn, J. Chem. Phys. 56, 1022–1039 (1972)

    Article  ADS  Google Scholar 

  7. E. Pop, R.W. Dutton, and K.E. Goodson: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion, J. Appl. Phys. 96, 4998–5005 (2004)

    Article  ADS  Google Scholar 

  8. C. Dames and G. Chen: J. Appl. Phys. 89, 682–693 (2003)

    Google Scholar 

  9. Y.-J. Han and P.G. Klemens: Phys. Rev. B 48, 6033–6042 (1993)

    Article  ADS  Google Scholar 

  10. A. Balandin and K.L. Wang: Phys. Rev. B 58, 1544–1549 (1998)

    Article  ADS  Google Scholar 

  11. N. Mingo: Phys. Rev. B 68, 113308 (2003)

    Article  ADS  Google Scholar 

  12. D. Li, Y. Wu, P. Kim, P. Yang, and A. Majumdar: Appl. Phys. Lett. 83, 2934–2936 (2003)

    Article  ADS  Google Scholar 

  13. P.G. Klemens: The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. A 68 (12), 1113–1128 (1955)

    Article  MATH  ADS  Google Scholar 

  14. P.G. Klemens: Proc. Roy. Soc. A 208, 108–133 (1951)

    Article  MATH  ADS  Google Scholar 

  15. J. Callaway: Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113, 1046–1051 (1959)

    Article  MATH  ADS  Google Scholar 

  16. M.G. Holland: Analysis of lattice thermal conductivity, Phys. Rev. 132 (6), 2461–2471 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Chantrenne and J.L. Barrat: Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models, J. Heat. Transf. 126, 577–585 (2004)

    Article  Google Scholar 

  18. P. Chantrenne, J.L. Barrat, X. Blase, and J.D. Gale: J. Appl. Phys. 97, 104318 (2005)

    Article  ADS  Google Scholar 

  19. E. Akkermans and G. Montambaux: Physique mésoscopique des électrons et des photons, EDP Sciences, Paris, 2004

    Google Scholar 

  20. G. Chen: Phys. Rev. B 23, 14958–14973 (1998)

    Article  ADS  Google Scholar 

  21. K. Schwab, E.A. Henriksen, J.M. Worlock, and M.L. Roukes: Measurement of the quantum of thermal conductance, Nature (London) 404, 974–976 (2000)

    Article  ADS  Google Scholar 

  22. S.G. Walkauskas, D.A. Broido, K. Kempa, and T.L. Reinecke: Lattice thermal conductivity of wires, J. Appl. Phys. 85 (5), 2579–2582 (1999)

    Article  ADS  Google Scholar 

  23. J. Zou and A. Balandin: Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys. 89 (5), 2932–2938 (2001)

    Article  ADS  Google Scholar 

  24. X. Lu and J. Chu: J. Appl. Phys. 100, 14305 (2006)

    Article  ADS  Google Scholar 

  25. X. Lu, Z. Shen, and J.H. Chu: J. Appl. Phys. 91, 1542 (2002)

    Article  ADS  Google Scholar 

  26. M.F. Modest: Radiative Heat Transfer, 2nd edn., Academic Press, San Diego, 2003

    Google Scholar 

  27. S. Chandrasekhar: Radiative Transfer, Dover, New York, 1960

    Google Scholar 

  28. S. Volz (Ed.): Microscale and Nanoscale Heat Transfer, Topics in Applied Physics Vol. 107, Springer, Berlin Heidelberg, 2007

    MATH  Google Scholar 

  29. R.B. Peterson: J. Heat. Transf. 116, 815–822 (1994)

    Article  ADS  Google Scholar 

  30. S. Mazumder and A. Majumdar: Monte Carlo simulations of phonon transport in solid thin films including dispersion and polarization, J. Heat. Transf. 123, 749–759 (2001)

    Article  Google Scholar 

  31. D. Lacroix, K. Joulain, and D. Lemonnier: Monte Carlo transient phonon transport in silicon and germanium at nanoscales, Phys. Rev. B 72, 064305 (2005)

    Article  ADS  Google Scholar 

  32. D. Lacroix, K. Joulain, D. Terris, and D. Lemonnier: Monte Carlo transient phonon transport in silicon and germanium at nanoscales, Appl. Phys. Lett. 89, 103104 (2006)

    Article  ADS  Google Scholar 

  33. D.J. Oh and R.A. Johnson: J. Mater. Res. 3 (3), 471–478 (1988)

    Article  ADS  Google Scholar 

  34. F. Ercolessi, M. Parrinello, and E. Tosatti: Phil. Mag. 58 (1), 213–226 (1988)

    Article  Google Scholar 

  35. F.H. Stillinger and T.A. Weber: Phys. Rev. B 31 (8), 5262–5271 (1985)

    Article  ADS  Google Scholar 

  36. R. Biswas and D.R. Hamann: Phys. Rev. Lett. 55 (19), 2001–2004 (1985)

    Article  ADS  Google Scholar 

  37. D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42 (15), 9458–9471 (1990)

    Article  ADS  Google Scholar 

  38. J. Tersoff: Phys. Rev. B 37 (12), 6991–7000 (1988)

    Article  ADS  Google Scholar 

  39. F. Ercolessi and J.B. Adams: Europhys. Lett. 26 (8), 583–588 (1994)

    Article  ADS  Google Scholar 

  40. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids, Oxford University Press, New York, 1997

    Google Scholar 

  41. D. Frenkel and S. Berend: Understanding Molecular Simulation, Academic Press, San Diego, 1996

    MATH  Google Scholar 

  42. D.C. Rapaport: The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995

    Google Scholar 

  43. R.J. Sadus: Molecular Simulation of Fluids, Elsevier Science, Amsterdam, 1999

    Google Scholar 

  44. P. Chantrenne and S. Volz: Etude par dynamique moléculaire: Introduction. Techniques de l’Ingénieur, 126:BE 8290, 2002

    Google Scholar 

  45. S. Volz and P. Chantrenne: Etude par dynamique moléculaire; conduction thermique aux nanoéchelles. Techniques de l’Ingénieur, page BE 8291, 2002

    Google Scholar 

  46. J.R. Lukes and Z. Hongliang: Thermal conductivity of individual carbon nanotubes, J. Heat. Transf. 129, 705 (2007)

    Article  Google Scholar 

  47. S. Maruyama: Molecular dynamics simulation of generation process of SWNTs, Physica B 323 (1), 187–189 (2002)

    Article  ADS  Google Scholar 

  48. S. Berbert, Y.K. Kwon, and D. Tomanek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84 (20), 4613–4616 (2000)

    Article  ADS  Google Scholar 

  49. J. Che, T. Cagin, and W.A. Goddard: Thermal conductivity of carbon nanotubes, Nanotechnology 11, 65–69 (2000)

    Article  ADS  Google Scholar 

  50. J.F. Moreland: The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulations, Nanoscale and Microscale Thermophysical Engineering 8 (1), 61–64 (2004)

    Article  ADS  Google Scholar 

  51. M.A. Osman and D. Srivastava: Temperature dependence of the thermal conductivity of single wall carbon nanotubes, Nanotechnology 12, 21–24 (2001)

    Article  ADS  Google Scholar 

  52. J.R. Lukes, D.Y. Li, X.G. Liang, and C.L. Tien: J. Heat. Transf. 122, 536 (2000)

    Article  Google Scholar 

  53. C.J. Gomes, M. Madrid, J.V. Goicochea, and C.H. Amon: In-plane and out-of-plane thermal conductivity of Si thin films predicted by molecular dynamics, J. Heat. Transf. 128, 1114–1121 (2006)

    Article  Google Scholar 

  54. S.P. Yuan and P.X. Jiang: Thermal conductivity of small nickel particles, International Journal of Thermophysics 27 (2), 581–595 (2006)

    Article  ADS  Google Scholar 

  55. S. Chapman and T.G. Cowling: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, Cambridge, 1970

    Google Scholar 

  56. B. Diu, C. Guthmann, D. Lederer, and B. Roulet: Eléments de physique statistique, Hermann, Paris, 1989

    Google Scholar 

  57. R. Zwanzig: Ann. Rev. Phys. Chem. 16, 67 (1964)

    Article  ADS  Google Scholar 

  58. A.J.C. Ladd, B. Moran, and W.G. Hoover: Phys. Rev. B 34, 5058 (1996)

    Article  ADS  Google Scholar 

  59. R. Kubo, M. Toda, and N. Hashitsume: Statistical Physics 2, Nonequilibrium Statistical Mechanics, 2nd edn., Springer, Berlin, 1991

    Google Scholar 

  60. F. Müller-Plathe: J. Chem. Phys. 106, (14), 6082 (1997)

    Google Scholar 

  61. P. Jund and R. Jullien: Phys. Rev. B 59 (21), 13707–13711 (1999)

    Article  ADS  Google Scholar 

  62. T. Ikeshoji and B. Hafskjold: Mol. Phys. 81, 251–261 (1994)

    Article  ADS  Google Scholar 

  63. B.C. Daly and H.J. Maris: Physica B 316317, 247–249 (2002)

    Article  Google Scholar 

  64. J.L. Barrat and F. Chiaruttini: Kapitza resistance at the liquid–solid interface, Mol. Phys. 101, 15605 (2003)

    Google Scholar 

  65. J.C. Schön C. Olischlger: Phys. Rev. B 59 (6), 4125–4133 (1999)

    Article  ADS  Google Scholar 

  66. P. Chantrenne and J.L. Barrat: Eurotherm seminar 75 on microscale heat transfer. In: Physics of Defects, Reims, France, 2003

    Google Scholar 

  67. T. ZhenAn and H. ZhengXing: Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity, Physica B 373 (2), 291–296 (2006)

    Article  Google Scholar 

  68. D.J. Evans: Phys. Lett. A 91 (9), 457 (1982)

    Article  ADS  Google Scholar 

  69. D.J. Evans: Phys. Rev. A 34 (2), 1449 (1986)

    Article  ADS  Google Scholar 

  70. D.J. Evans: J. Chem. Phys. 78, 3297 (1983)

    Google Scholar 

  71. D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, and A.J.C. Ladd: Phys. Rev. 28, 1016 (1983)

    Article  ADS  Google Scholar 

  72. S. Volz and G. Chen: Molecular-dynamics simulation of thermal conductivity of silicon crystals, Phys. Rev. B 61, 2651–2656 (2000)

    Article  ADS  Google Scholar 

  73. M. Asheghi, M.N. Toulzebaev, K.E. Goodson, Y.K. Leung, and S.S. Wong: J. Heat. Transf. 120, 30 (1998)

    Article  Google Scholar 

  74. Y.S. Ju and K.E. Goodson: Appl. Phys. Lett. 74 (20), 3005–3007 (1999)

    Article  ADS  Google Scholar 

  75. W. Liu and M. Asheghi: Thermal conductivity in ultra thin pure and doped single crystal silicon layers at high temperatures. In: Proc. ASME Summer Heat Transfer Conference, pp. HT2005–72540, San Francisco, USA, 2005

    Google Scholar 

  76. J. Chen and R. Konenkamp: Vertical nanowire transistor in flexible polymer foil, Appl. Phys. Lett. 82, 4782–4784 (2003)

    Article  ADS  Google Scholar 

  77. S. Lepri, R. Livi, and A. Politi: Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377, 1–80 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  78. P. Kim, L. Shi, A. Majumdar, and P.L. Mc Euen: Thermal transport measurements of individual multiwalled carbon nanotubes, Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  79. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and Tetsuo Shimizu: Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett. 95, 065502 (2005)

    Article  ADS  Google Scholar 

  80. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen: Mesoscopic thermal transport and energy dissipation in carbon nanotubes, Physica B 323, 67–70 (2002)

    Article  ADS  Google Scholar 

  81. P. Vincent, S.T. Purcell, C. Journet, and V.T. Binh: Modelization of resistive heating of carbon nanotubes during field emission, Phys. Rev. B 66, 075406 (2006)

    Article  ADS  Google Scholar 

  82. S.T. Purcell, P. Vincent, C. Journet, and V.T. Binh: Hot nanotubes: Stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current, Phys. Rev. Lett. 88 (10), 105502 (2000)

    Article  ADS  Google Scholar 

  83. J. Hone, M. Whitney, C. Piskoti, and A. Zettl: Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59 (4), R2514–R2516 (1999)

    Article  ADS  Google Scholar 

  84. Z. Yao, J. Wang, B. Li, and G. Liu: Thermal conduction of carbon nanotubes using molecular dynamics, Phys. Rev. B 71, 085417 (2005)

    Article  ADS  Google Scholar 

  85. W. Liu and M. Asheghi: Appl. Phys. Lett. 84 (19), 3819–3821 (2004)

    Article  ADS  Google Scholar 

  86. Y. Zhang, J. Christofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan, and P. Yang: IEEE Transactions on Nanotechnology 5 (1), 67–74 (2006)

    Article  ADS  Google Scholar 

  87. O. Bourgeois, T. Fournier, and J. Chaussy: J. Appl. Phys. 101, 16104 (2007)

    Article  ADS  Google Scholar 

  88. A. Mavrokefalos, M.T. Pettes, Z. Feng, and S. Li: Rev. Sci. Instrum. 78, 34901/1–6 (2007)

    Article  Google Scholar 

  89. D.G. Cahill, M. Katiyar, and J.R. Abelson: Phys. Rev. B 50, 6077–6081 (1994)

    Article  ADS  Google Scholar 

  90. Q.G. Zhang, B.Y. Cao, X. Zhang, M. Fujii, and K. Takahashi: Phys. Rev. B 74 (13), 134109 (2006)

    Article  ADS  Google Scholar 

  91. Z. Xing, X. Huaqing, M. Fujii, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu: Appl. Phys. Lett. 86 (17), 1719126 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Chantrenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chantrenne, P., Joulain, K., Lacroix, D. (2009). Nanostructures. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics