Skip to main content

Scanning Thermal Microscopy with Fluorescent Nanoprobes

  • Chapter
  • First Online:
Thermal Nanosystems and Nanomaterials

Abstract

Luminescence is light emission by materials after absorption of energy. Today, this effect has been made into a very powerful way of characterising materials in a whole range of different fields, across physics, biology, and chemistry. In terms of technological applications, luminescence is also on the point of replacing incandescence for short-range lighting purposes, e.g., pocket lamps, with the advent of white light-emitting diodes. In this chapter, we shall describe a specific application of luminescence to the development of thermal nanosensors. There are four sections. In the first two, we simply describe the luminescence phenomenon, along with several light-emitting materials used for thermometric measurements. In particular, we shall explain how the temperature of a material can be determined from data concerning its luminescence. In Sect. 17.3, we shall discuss the technique of scanning thermal microscopy with fluorescent nanoprobes, together with the experimental setup. In the last section, we shall discuss applications of this technique to image microelectronic devices. The characteristics of the probes and their advantages and disadvantages as compared with other near-field probes will be described in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Lakowicz: Principles of Fluorescence Spectroscopy, Plenum, New York, 1999

    Google Scholar 

  2. Y.P. Varshni: Physica 34, 149–154 (1967)

    Article  ADS  Google Scholar 

  3. L. Viña, S. Logothetidis, and M. Cardona: Phys. Rev. B 30 (4), 1979–1991 (1984)

    Article  ADS  Google Scholar 

  4. For a review, see for instance S.W. Allison and G.T. Gillies: Rev. Sci. Intrum. 68 (7), 2615–2650 (1997)

    Google Scholar 

  5. D. Ross, M. Gaitan, and L.E. Locascio: Anal. Chem. 73, 4117–4123 (2001)

    Article  Google Scholar 

  6. H.F. Arata, P. Löw, K. Ishizuka, C. Bergaud, B. Kim, H. Noji, and H. Fujita: Sensors & Actuators B 117, 339–345 (2006)

    Article  Google Scholar 

  7. F.H. Ko, L.Y. Weng, C.J. Ko, and T.C. Chu: Microelectron. Eng. 83, 864–868 (2006)

    Article  Google Scholar 

  8. M. Dejneka, E. Snitzer, and R.E. Riman: J. Lum. 65, 227–245 (1995)

    Article  ADS  Google Scholar 

  9. A.J. Kenyon: Prog. Quantum. Electron. 26, 225–284 (2002)

    Article  ADS  Google Scholar 

  10. F. Auzel: Chem. Rev. 104, 139–173 (2004)

    Article  Google Scholar 

  11. H. Berthou and C.K. Jörgensen: Opt. Lett. 15 (19), 1100–1102 (1990)

    Article  ADS  Google Scholar 

  12. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D.B. Ostrowsky, and G.W. Baxter: Appl. Opt. 34 (34), 8019–8025 (1995)

    Article  ADS  Google Scholar 

  13. G. Paez and M. Strojnik: Appl. Opt. 42 (16), 3251–3258 (2003)

    Article  ADS  Google Scholar 

  14. M.A.R.C. Alencar, G.S. Maciel, C.B. de Araujo, and A. Patra: Appl. Phys. Lett. 84 (23), 4753–4755 (2004)

    Article  ADS  Google Scholar 

  15. W.H. Fonger and C.W. Struck: J. Chem. Phys. 52 (12), 6364–6372 (1970)

    Article  ADS  Google Scholar 

  16. R.H. Krauss, R.G. Hellier, and J.C. McDaniel: Appl. Opt. 33 (18), 3901–3904 (1994)

    Article  ADS  Google Scholar 

  17. H. Peng, H. Song, B. Chen, J. Wang, S. Lu, X. Kong, and J. Zhang: J. Chem. Phys. 118 (7), 3277–3282 (2003)

    Article  ADS  Google Scholar 

  18. M.L. Bhaumik: J. Chem. Phys. 40 (12), 3711–3715 (1964)

    Article  ADS  Google Scholar 

  19. S.M. Borisov and O.S.Wolfbeis: Anal. Chem. 78, 5094–5101 (2006)

    Google Scholar 

  20. G. Laufer, N.B. Rotchford, and R.H. Krauss: Am. J. Phys. 65 (5), 447–449 (1997)

    Article  ADS  Google Scholar 

  21. P. Kolodner and A.J. Tyson: Appl. Phys. Lett. 40 (9), 782–784 (1982)

    Article  ADS  Google Scholar 

  22. K.T.V. Grattan and A.W. Palmer: Rev. Sci. Instrum. 56 (9), 1784–1787 (1985)

    Article  ADS  Google Scholar 

  23. S.W. Allison, G.T. Gillies, A.J. Rondinone, and M.R. Cates: Nanotechnology 14, 859–863 (2003)

    Article  ADS  Google Scholar 

  24. Z. Zhang, K.T.V. Grattan, and A.W. Palmer: Phys. Rev. B 48 (11), 7772–7778 (1993)

    Article  ADS  Google Scholar 

  25. M.A. Hines and P. Guyot-Sionnest: J. Phys. Chem. 100, 468–471 (1996)

    Article  Google Scholar 

  26. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulek, J.R. Heine, H. Matoussi, R. Ober, K.F. Jensen, and M.G. Bawendi: J. Phys. Chem. B 101, 9463–9475 (1997)

    Article  Google Scholar 

  27. G.W. Walker, V.C. Sundar, C.M. Rudzinski, A.W. Wun, M.G. Bawendi, and D.G. Nocera: Appl. Phys. Lett. 83 (17), 3555–3557 (2003)

    Article  ADS  Google Scholar 

  28. D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni: Phys. Rev. B 71, 235409 (2005)

    Article  ADS  Google Scholar 

  29. V. Biju, Y. Makita, A. Sonoda, H. Yokoyama, Y. Baba, and M. Ishikawa: J. Phys. Chem. 109, 13899–13905 (2005)

    Google Scholar 

  30. A. Joshi, K.Y. Narsingi, M.O. Manasreh, E.A. Davis, and B.D. Weaver: Appl. Phys. Lett. 89, 131907 (2006)

    Article  ADS  Google Scholar 

  31. A.J. Melmed: J. Vac. Sci. Technol. B 9 (2), 601–608 (1991)

    Article  Google Scholar 

  32. L. Aigouy, Y. De Wilde, M. Mortier, J. Giérak, and E. Bourhis: Appl. Opt. 43 (19), 3829–3837 (2004)

    Article  ADS  Google Scholar 

  33. See, for instance, L. Wang: Appl. Phys. Lett. 73 (25), 3781–3783 (1998)

    Google Scholar 

  34. P. Kolodner and J.A. Tyson: Appl. Phys. Lett. 42 (1), 117–119 (1983)

    Article  ADS  Google Scholar 

  35. E. Van Keuren, M. Cheng, O. Albertini, C. Luo, J. Currie, and M. Paranjape: Sensors and Materials 17 (1), 1–6 (2005)

    Google Scholar 

  36. P. Löw, B.J. Kim, N. Takama, and C. Bergaud: Small 4 (7), 908–914 (2008)

    Article  Google Scholar 

  37. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot: Appl. Phys. Lett. 87, 184105 (2005)

    Article  ADS  Google Scholar 

  38. B. Samson, L. Aigouy, R. Latempa, G. Tessier, M. Aprili, M. Mortier, J. Lesueur, and D. Fournier: J. Appl. Phys. 102, 024305 (2007)

    Article  ADS  Google Scholar 

  39. B. Samson, L. Aigouy, G. Tessier, P. Löw, C. Bergaud, B. Kim, and M. Mortier: J. of Phys.: Conference Series 92, 012089 (2007)

    Google Scholar 

  40. L. Shi, S. Plyasunov, A. Bachtold, P.L. McEuen, and A. Majumdar: Appl. Phys. Lett. 77 (26), 4295–4297 (2000)

    Article  ADS  Google Scholar 

  41. B. Samson, L. Aigouy, P. Löw, C. Bergaud, B. Kim, and M. Mortier: Appl. Phys. Lett. 92, 023101 (2008)

    Article  ADS  Google Scholar 

  42. J.J. Greffet and R. Carminati: Prog. Surf. Sci. 56, 133–237 (1997)

    Article  ADS  Google Scholar 

  43. S. Gomès, N. Trannoy, and P. Grossel: Meas. Sci. Technol. 10, 805–811 (1999)

    Article  ADS  Google Scholar 

  44. L. Shi and A. Majundar: J. Heat Transfer 124, 329–337 (2002)

    Article  Google Scholar 

  45. P.O. Chapuis, J.J. Greffet, K. Joulain, and S. Volz: Nanotechnology 17, 2978–2981 (2006)

    Article  ADS  Google Scholar 

  46. G. Mills, H. Zhou, A. Midha, L. Donaldson, and J.M.R. Weaver: Appl. Phys. Lett. 72 (22), 2900–2902 (1998)

    Article  ADS  Google Scholar 

  47. H.M. Pollock and A. Hammiche: J. Phys. D Appl. Phys. 34, R23–R53 (2001)

    Article  ADS  Google Scholar 

  48. S. Lefèvre and S. Volz: Rev. Sci. Instrum. 76, 033701 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Aigouy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aigouy, L. et al. (2009). Scanning Thermal Microscopy with Fluorescent Nanoprobes. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics