Skip to main content

Accounting for Heat Transfer Problems in the Semiconductor Industry

  • Chapter
  • First Online:
Thermal Nanosystems and Nanomaterials

Part of the book series: Topics in Applied Physics ((TAP,volume 118))

Abstract

Electronics has become omnipresent in our everyday lives. Occurring in all modern machines in the form of systems, functions, and components, it is gradually supplementing or replacing those functions previously carried out exclusively by mechanics, electromechanics, hydraulics, and pneumatics, by making the processes faster, more flexible, and safer in a quite spectacular way, and enriching the interaction between human and machine, until it has become a key feature of innovation and competitivity in all sectors of the economy.

The preliminary ‘electronification’ of existing systems is quickly followed by ever more sophisticated attempts to integrate electronic components and functions as close as possible to the target information sources and the devices to be operated, positioning the information processing and storage centers (processor and memory) as judiciously as possible. In this way, all kinds of chip are taken away from the sheltered conditions of specialised containers and end up having to operate in whatever environment prevails at the heart of the system they are designed to serve. In high speed trains, the encapsulated chips of the power switches are in contact with the alternator, at temperatures that sometimes reach 300°C, while those controlling car ignition must resist humidity and corrosion, and the power transistors in radars and lasers of on-board lidar systems have to operate at high altitudes, at sea, or in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Holman: Heat Transfer, Metric Editions, Mechanical Engineering Series, McGraw Hill

    Google Scholar 

  2. J. Taine, J.P. Petit: Transferts thermiques. Mécanique des fluides anisothermes, Dunod

    Google Scholar 

  3. F.P. Incropera, D.P. Dewitt: Introduction to Heat Transfer, 3rd edn., Wiley

    Google Scholar 

  4. V.L. Hein: Convection and conduction cooling of substrates containing multiple heat sources, The Bell System Technical Journal, Vol. XLVI, Oct 1967, no. 8, pp. 1659–1678

    Google Scholar 

  5. F. Dhondt: Modélisation electrothermique des transistors bipolaires à hétérojonction (TBH) pour les applications de puissance à haut rendement en bande X, PhD. Thesis at the University of Lille, France

    Google Scholar 

  6. R. Mehandru, S. Kim, J. Kim, F. Ren, J.R. Lothian, S.J. Pearton, S.S. Park, Y.J. Park: Thermal simulations of high power, bulk GaN rectifiers, Solid State Electronics 47, 1037–1043 (2003)

    Article  ADS  Google Scholar 

  7. S. Orain: Etude théorique et expérimentale des phénomènes de conduction thermique dans les matériaux diélectriques déposés en couche minces. Application aux dépôts d’oxyde, PhD Thesis at the University of Nantes

    Google Scholar 

  8. M. Gerl, J.P. Issi: Traité des matériaux, Vol. 8, Physique des Matériaux, Presses Polytechniques et Universitaires Romandes, p. 702

    Google Scholar 

  9. J.M. Ziman: Electron and Phonons. The Theory of Transport Phenomena in Solids, Oxford University Press (1960) p. 545

    Google Scholar 

  10. R. Breman: Thermal Conduction in Solids, Oxford University Press (1976) pp. 66–69

    Google Scholar 

  11. J.E. Parrot, A.D. Stukes: Thermal Conductivity of Solids, Pion, London (1975) pp. 44–122

    Google Scholar 

  12. J.C. Lambropoulos, S.D. Jacobs, et al.: Thermal conductivity of thin films: Measurement and microstructure effects, HTD Thin Film Heat Transfer: Properties and Proceedings ASME 184, 21–32 (1991)

    Google Scholar 

  13. D.I. Florescu, V.M. Asnin, L.G. Mourokh, F.H Pollack, R.J. Molnar: Doping dependence of the thermal conductivity of hybrid vapour phase epitaxy grown n-GaN/sapphire (0001) using a scanning thermal microscope, Symposium on Gallium Nitride and Related Alloys, at the 1999 Fall Meeting of the Materials Research Society held in Boston

    Google Scholar 

  14. D.I. Florescu, L.G. Mourokh, F.H Pollack, D.C. Look, G. Cantwell, X. Li: High spatial resolution thermal conductivity of bulk ZnO (0001), J. Appl. Phys. 91 (2) (2002)

    Google Scholar 

  15. M.E. Brinson, W. Dunstan: Thermal conductivity and thermoelectric power of heavily doped n-type silicon, J. Phys. C Solid St. Phys. 3 (1970)

    Google Scholar 

  16. D. Kotchetkov, A.A. Balandin: Modelling of the thermal conductivity of polycrystalline GaN film

    Google Scholar 

  17. D. Kotchetkov, J. Zou, A.A. Balandin: Theoretical investigation of thermal conductivity in wurtzite GaN, Mat. Res. Soc. Symp. Proc. 731, W5.11 (2002)

    Google Scholar 

  18. B.C. Daly, H.J. Maris, A.V. Nurmikko, M. Kuball, J. Han: Optical pump-and-probe measurement of the thermal conductivity of nitride thin films, J. Appl. Phys. 92 (7), 3821–3824 (2002)

    Article  ADS  Google Scholar 

  19. D.I. Florescu, V.M. Asnin, F.H Pollack, A.M. Jones, J. Ramer, M. Schurman, I. Ferguson: Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy, Appl. Phys. Lett. 77 (10), 1464–1466 (2000)

    Article  ADS  Google Scholar 

  20. J. Zou, D. Kotchetov, A.A. Balandin, D.I. Florescu, F.H. Pollack: Thermal conductivity of GaN films: Effects of impurities and dislocations, J. Appl. Phys. 92 (5), 2534–2539 (2002)

    Article  ADS  Google Scholar 

  21. J. Zou, D. Kotchetov, A.A. Balandin, D.I. Florescu, F.H. Pollack: Effect of dislocation on thermal conductivity of GaN layers, Appl. Phys. Lett. 79 (26), 4316–4318 (2001)

    Article  ADS  Google Scholar 

  22. Y. Gu, D. Zhu, L. Han, X. Ruan: Imaging of thermal conductivity with lateral resolution of sub-micrometer using scanning thermal microscopy, Fourteenth Symposium on Thermophysical Properties, 25–30 June 2000, Boulder, Colorado, USA

    Google Scholar 

  23. A.L. Palisoc, Y.J. Min, C.C. Lee: Thermal properties of five-layer infinite plate structure with embedded heat source, J. Appl. Phys. 65 (11), 4438–4444 (1989)

    Article  ADS  Google Scholar 

  24. A.L. Palisoc, C.C. Lee: Exact thermal representation of multilayer rectangular structures by infinite plate structures using the method of images, J. Appl. Phys. 64 (12), 6851–6857 (1988)

    Article  ADS  Google Scholar 

  25. C.C. Lee, A.L. Palisoc: Real-time thermal design of integrated circuit devices, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 11 (4), 485–492 (1988)

    Article  Google Scholar 

  26. C.C. Lee, A.L. Palisoc, Y.J. Min: Thermal analysis of integrated circuit devices and packages, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 12 (4), 701–709 (1992)

    Article  Google Scholar 

  27. K. Kurabayashi, K.E. Goodson: Precision measurement and mapping of die-attach thermal resistance, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 21 (3), 506–514 (1998)

    Article  Google Scholar 

  28. T.-Y. Chiang, K. Banerjee, K.C. Saraswat: Analytical thermal model for multilevel VLSI interconnects incorporating via effect, IEEE Electron Device Letters 23 (1), 31–33 (2002)

    Article  ADS  Google Scholar 

  29. J. Park, M.S. Shin, C.C. Lee: Thermal modelling and measurement of GaN-based HFET devices, IEEE Electron Device Letters 24 (7), 424–426 (2003)

    Article  ADS  Google Scholar 

  30. G.K. Wachutka: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modelling, IEEE Transactions on Computer-Aided Design 9 (11), 1141–1149 (1990)

    Article  Google Scholar 

  31. D.H. Chien, C.Y. Wang, C.C. Lee: Temperature solution of five-layer structure with a circular embedded source and its applications, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 15 (5), 707–714 (1992)

    Article  Google Scholar 

  32. H. Iwasaki, S. Yokoyama, T. Tsukui, M. Koyano, H. Hori, S. Sano: Evaluation of the figure of merit of thermoelectric modules by Harman method, Jpn. J. Appl. Phys. 42, 3707–3708 (2003)

    Article  ADS  Google Scholar 

  33. D.H. Smith, A. Fraser, J. O’Neil: Measurement and prediction of operating temperature for GaAs ICs, Semi-Therm 86 Symposium, Scottsdale, Arizona, 9–11 Dec 1986, pp. 1–20

    Google Scholar 

  34. A.G. Kokkas: Thermal analysis of multiple-layer structures, IEEE Transactions on Electron Devices, 21 (11), 674–681 (1974)

    Article  Google Scholar 

  35. D.K. Sharma, K.V. Ramanathan: Modelling thermal effects on MOS IV characteristics, IEEE Electron Device Letters 4 (10), 362–364 (1983)

    Article  Google Scholar 

  36. T. Aigo, H. Yashiro, M. Goto, A. Jono, A. Tachikawa, A. Moritani: Thermal resistance and electronic characteristics for high electron mobility transistors grown on Si and GaAs substrates by metal–organic chemical vapour deposition, Jpn. J. Appl. Phys. 32, 5508–5513 (1993)

    Article  ADS  Google Scholar 

  37. G.-B. Gao, M.-Z. Wang, X. Gui, H. Morkoc: Thermal design studies of high-power heterojunction transistors, IEEE Transactions on Electron Devices 36 (5), 854–862 (1989)

    Article  ADS  Google Scholar 

  38. G.N. Logvinov, Y.G. Gurevich, I.M. Lashkevich: Surface heat capacity and surface heat impedance: An application to the theory of thermal waves, Jpn. J. Appl. Phys. 42, 4448–4452 (2003)

    Article  ADS  Google Scholar 

  39. V. Szekely: A new evaluation method of thermal transient measurement results, Microelectronics Journal 28, 277–292 (1997)

    Article  Google Scholar 

  40. J.K. Lump: Hybrid assemblies. In: The Electronic Packaging Handbook, CRC Press, (2000) 7-1/7-25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brylinski, C. (2009). Accounting for Heat Transfer Problems in the Semiconductor Industry. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics