Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 636))

Abstract

Striving for operational and strategic excellence, companies have continuously been trying to improve their business processes in the past years. As sophisticated planning processes are often seen as a key enabler for efficient business processes, this has led to an increased focus on developing methods to optimize processes using mathematical methods in cases where decision problems are too complex to be solved by a human decision maker. In order to transfer such methods into practice, IT-based systems such as Advanced Planning Systems (APS) that make use of these optimization methods to support and automate planning processes and execute the resulting plans are essential.

In companies handling physical goods, the planning processes for production and logistics often involve a high amount of complexity. This complexity results on the one hand from the fact that companies frequently have multiple locations in various countries and offer a large product variety associated with high manufacturing complexity. On the other hand, companies are increasingly embedded in complex global supply networks with a large number of actual or potential suppliers and customers. From the viewpoint of an individual company, its suppliers and customers and the actors further upstream or downstream are referred to by the term Supply Chain (SC). Thus, each company may be part of multiple “subjective” supply chains of other companies (Bretzke, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Begnaud, J., Miller, L., & Benjaafar, S. (2006). The multilevel lot sizing problem with flexible production sequences (Working paper). Minnesota: Industrial and Systems Engineering Department of Mechanical Engineering, University of Minnesota, MN.

    Google Scholar 

  • Bretzke, W. (2006). SCM: Sieben Thesen zur zukünftigen Entwicklung logistischer Netzwerke. Supply Chain Management, 6, 7–15.

    Google Scholar 

  • Hale, W., Pyke, D. F. P., & Rudi, N. (2000). An assemble-to-order system with component substitution (Working paper). Hanover, NH / Rochester, NY: Amos Tuck School, Dartmouth College / The Simon School, University of Rochester.

    Google Scholar 

  • Naim, M., Potter, A., Mason, R., & Bateman, N. (2006). The role of transport flexibility in logistics provision. The International Journal of Logistics Management, 17(3), 297–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christian Lang .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, J.C. (2010). Introduction. In: Production and Inventory Management with Substitutions. Lecture Notes in Economics and Mathematical Systems, vol 636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04247-8_1

Download citation

Publish with us

Policies and ethics