Skip to main content

SCJ: A Variant of Breakpoint Distance for Which Sorting, Genome Median and Genome Halving Problems Are Easy

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

The breakpoint distance is one of the most straightforward genome comparison measures. Surprisingly, when it comes to define it precisely for multichromosomal genomes with both linear and circular chromosomes, there is more than one way to go about it. In this paper we study Single-Cut-or-Join (SCJ), a breakpoint-like rearrangement event for which we present linear and polynomial time algorithms that solve several genome rearrangement problems, such as median and halving. For the multichromosomal linear genome median problem, this is the first polynomial time algorithm described, since for other breakpoint distances this problem is NP-hard. These new results may be of value as a speedily computable, first approximation to distances or phylogenies based on more realistic rearrangement models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sturtevant, A.H., Dobzhansky, T.: Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. PNAS 22(7), 448–450 (1936)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McClintock, B.: The origin and behavior of mutable loci in maize. PNAS 36(6), 344–355 (1950)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. PNAS 81(3), 814–818 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. Symp. Theory of Computing STOC 1995 (1995)

    Google Scholar 

  5. Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1-3), 137–151 (1996)

    Article  Google Scholar 

  6. Christie, D.A.: Sorting permutations by block-interchanges. Information Processing Letters 60, 165–169 (1996)

    Article  Google Scholar 

  7. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998)

    Article  Google Scholar 

  8. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 369–379 (2006)

    Article  PubMed  Google Scholar 

  9. Mira, C., Meidanis, J.: Sorting by block-interchanges and signed reversals. In: Proc. ITNG 2007, pp. 670–676 (2007)

    Google Scholar 

  10. Dias, Z., Meidanis, J.: Genome rearrangements distance by fusion, fission, and transposition is easy. In: Proc. SPIRE 2001, pp. 250–253 (2001)

    Google Scholar 

  11. Lu, C.L., Huang, Y.L., Wang, T.C., Chiu, H.T.: Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7, 295 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Genome Inform. Ser. Workshop Genome Inform., vol. 8, pp. 25–34 (1997)

    Google Scholar 

  14. Moret, B.M., Wang, L.S., Warnow, T., Wyman, S.K.: New approaches for reconstructing phylogenies from gene order data. Bioinformatics 17(suppl. 1), S165–S173 (2001)

    Article  Google Scholar 

  15. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. Online 4, 69–74 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving problems. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 1–13. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Bryant, D.: The complexity of the breakpoint median problem. Technical Report CRM-2579, Centre de recherches mathematiques, Université de Montréal (1998)

    Google Scholar 

  20. Caprara, A.: The reversal median problem. INFORMS J. Comput. 15, 93–113 (2003)

    Article  Google Scholar 

  21. Lovász, L., Plummer, M.D.: Matching theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)

    Google Scholar 

  22. Ohno, S.: Evolution by gene duplication. Springer, Heidelberg (1970)

    Book  Google Scholar 

  23. Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast saccharomyces cerevisiae. Nature 428(6983), 617–624 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Alekseyev, M.A., Pevzner, P.A.: Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(1), 98–107 (2007)

    Article  PubMed  Google Scholar 

  25. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 276–286. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Warren, R., Sankoff, D.: Genome aliquoting with double cut and join. BMC Bioinformatics 10(suppl. 1), S2 (2009)

    Google Scholar 

  27. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. Bioinformatics 24(13), i96–i104 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feijão, P., Meidanis, J. (2009). SCJ: A Variant of Breakpoint Distance for Which Sorting, Genome Median and Genome Halving Problems Are Easy. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics