Quantifying Systemic Evolutionary Changes by Color Coding Confidence-Scored PPI Networks

  • Phuong Dao
  • Alexander Schönhuth
  • Fereydoun Hormozdiari
  • Iman Hajirasouliha
  • S. Cenk Sahinalp
  • Martin Ester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5724)

Abstract

A current major challenge in systems biology is to compute statistics on biomolecular network motifs, since this can reveal significant systemic differences between organisms. We extend the “color coding” technique to weighted edge networks and apply it to PPI networks where edges are weighted by probabilistic confidence scores, as provided by the STRING database. This is a substantial improvement over the previously available studies on, still heavily noisy, binary-edge-weight data. Following up on such a study, we compute the expected number of occurrences of non-induced subtrees with k ≤ 9 vertices. Beyond the previously reported differences between unicellular and multicellular organisms, we reveal major differences between prokaryotes and unicellular eukaryotes. This establishes, for the first time on a statistically sound data basis, that evolutionary distance can be monitored in terms of elevated systemic arrangements.

Keywords

Biomolecular Network Motifs Color Coding Evolutionary Systems Biology Protein-Protein Interaction Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif counting and discovery by color coding. Bioinformatics 24(Supp. 1), i241–i249 (2008)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Gutner, S.: Balanced families of perfect hash functions and their applications. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 435–446. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)CrossRefGoogle Scholar
  4. 4.
    Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 453–464. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bjorklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The fast intersection transform with applications to counting paths (2008), http://arxiv.org/abs/0809.2489
  6. 6.
    Ciriello, G., Guerra, C.: A review on models and algorithms for motif discovery in protein-protein interaction networks. Briefings in Functional Genomics and Proteomics (2008)Google Scholar
  7. 7.
    Colak, R., Hormozdiari, F., Moser, F., Schönhuth, A., Holman, J., Sahinalp, S.C., Ester, M.: Dense graphlet statistics of protein interaction and random networks. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 14, pp. 178–189 (2009)Google Scholar
  8. 8.
    Dao, P., Schoenhuth, A., Hormozdiari, F., Hajirasouliha, I., Sahinalp, S.C., Ester, M.: Quantifying systemic evolutionary changes by color coding confidence-scored ppi networks. Supplementary Materials (2009), http://www.cs.sfu.ca/~pdao/personal/weightedmotifsup.pdf
  9. 9.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A tool for querying protein interaction networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33, 892–922 (2004)CrossRefGoogle Scholar
  11. 11.
    Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 92–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Han, J., Dupuy, D., Bertin, N., Cusick, M., Vidal, M.: Effect of sampling on topology predictions of protein-protein interaction networks. Nature Biotech. 23, 839–844 (2005)CrossRefGoogle Scholar
  13. 13.
    Hormozdiari, F., Berenbrink, P., Przulj, N., Sahinalp, S.C.: Not all scale-free networks are born equal: The role of the seed graph in ppi network evolution. PLoS Comput. Biol. 3(7) (2007)Google Scholar
  14. 14.
    Huffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color coding with applications to signaling pathways. Algorithmica 52(2), 114–132 (2008)CrossRefGoogle Scholar
  15. 15.
    Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerke, T., Julien, P., Roth, A., Simonovic, M., Bork, P., von Mering, C.: String 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research 37(Database issue), D412–D416 (2009)CrossRefGoogle Scholar
  16. 16.
    Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability problems. In: FOCS, pp. 56–64 (1983)Google Scholar
  17. 17.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefPubMedGoogle Scholar
  18. 18.
    University of Victoria. Combinatorial object server (since 1995), http://www.theory.csc.uvic.ca/~cos
  19. 19.
    Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ulitsky, I., Shamir, R.: Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics (2009), doi:10.1093/bioinformatics/btp118Google Scholar
  23. 23.
    Vassilevska, V., Wiliams, R.: Finding, minimizing and counting weighted subgraphs. In: Proceedings of the Symposium of the Theory of Computing, STOC (to appear, 2009)Google Scholar
  24. 24.
    von Mering, C., Jensen, L.J.: News about the string and stitch databases (2008), http://string-stitch.blogspot.com/
  25. 25.
    von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A., Bork, P.: String: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research 33(Database issue), D433–D437(2005)CrossRefGoogle Scholar
  26. 26.
    Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes and Development 21, 1010–1024 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Phuong Dao
    • 1
  • Alexander Schönhuth
    • 1
  • Fereydoun Hormozdiari
    • 1
  • Iman Hajirasouliha
    • 1
  • S. Cenk Sahinalp
    • 1
  • Martin Ester
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations