Skip to main content

Structural Alignment of RNA with Complex Pseudoknot Structure

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

The secondary structure of an ncRNA molecule is known to play an important role in its biological functions. Aligning a known ncRNA to a target candidate to determine the sequence and structural similarity helps in identifying de novo ncRNA molecules that are in the same family of the known ncRNA. However, existing algorithms cannot handle complex pseudoknot structures which are found in nature. In this paper, we propose algorithms to handle two types of complex pseudoknots: simple non-standard pseudoknots and recursive pseudoknots. Although our methods are not designed for general pseudoknots, it already cover all known ncRNAs in both Rfam and PseudoBase databases. A preliminary evaluation on our algorithms show that it is useful to identify ncRNA molecules in other species which are in the same family of a known ncRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frank, D.N., Pace, N.R.: Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 67, 153–180 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen, V.T., et al.: 7SK small nuclear RNA blinds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Yang, Z., et al.: The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Liu, C., et al.: NONCODE: an integrated knowledge database of non-coding RNAs. NAR 33(Database issue), D112–D115 (2005)

    Article  Google Scholar 

  5. Griffiths-Jones, S., et al.: Rfam: an RNA family database. NAR 31(1), 439–441 (2003), http://www.sanger.ac.uk/Software/Rfam/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eddy, S.: Non-coding RNA genes and the modern RNA world. Nature Reviews in Genetics 2, 919–929 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Hen, J., Greider, C.W.: Functional analysis of the pseudoknot structure in human telomerase RNA. PNAS 102(23), 8080–8085 (2005)

    Article  Google Scholar 

  8. Dam, E., Pleij, K., Draper, D.: Structural and functional aspects of RNA pseudoknots. Biochemistry 31(47), 11665–11676 (1992)

    Article  CAS  PubMed  Google Scholar 

  9. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J., Strobel, S.A.: Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Rivas, E., Eddy, S.: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 16(7), 583–605 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Klei, R.J., Eddy, S.R.: RSEARCH: Finding homologs of single structured RNA sequences. BMC Bioinformatics 4(1), 44 (2003)

    Article  Google Scholar 

  12. Zhang, S., Hass, B., Eskin, E., Bafna, V.: Searching genomes for noncoding RNA using FastR. IEEE/ACM TCBB 2(4) (2005)

    Google Scholar 

  13. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A., Ng, J., Oliehoek, J.: Pseudobase: a database with RNA pseudoknots. NAR 28(1), 201–204 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferre-D’Amare, A.R., Zhou, K., Doudna, J.A.: Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998)

    Article  PubMed  Google Scholar 

  15. Han, B., Dost, B., Bafna, V., Zhang, S.: Structural Alignment of Pseudoknotted RNA. JCB 15(5), 489–504 (2008)

    CAS  Google Scholar 

  16. Le, S.Y., Chen, J.H., Maizel, J.: Efficient searches for unusual folding regions in RNA sequences. In: Structure and Methods: Human Genome Initiative and DNA Recombination, vol. 1, pp. 127–130 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, T.K.F., Lam, T.W., Sung, WK., Yiu, S.M. (2009). Structural Alignment of RNA with Complex Pseudoknot Structure. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics