Skip to main content

MADMX: A Novel Strategy for Maximal Dense Motif Extraction

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

We develop, analyze and experiment with a new tool, called madmx, which extracts frequent motifs, possibly including don’t care characters, from biological sequences. We introduce density, a simple and flexible measure for bounding the number of don’t cares in a motif, defined as the ratio of solid (i.e., different from don’t care) characters to the total length of the motif. By extracting only maximal dense motifs, madmx reduces the output size and improves performance, while enhancing the quality of the discoveries. The efficiency of our approach relies on a newly defined combining operation, dubbed fusion, which allows for the construction of maximal dense motifs in a bottom-up fashion, while avoiding the generation of nonmaximal ones. We provide experimental evidence of the efficiency and the quality of the motifs returned by madmx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of 20th VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Apostolico, A., Comin, M., Parida, L.: VARUN: discovering extensible motifs under saturation constraints. IEEE Trans. on Computational Biology and Bioinformatics (to appear, 2009)

    Google Scholar 

  3. Apostolico, A., Parida, L.: Incremental paradigms of motif discovery. Journal of Computational Biology 11(1), 15–25 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Apostolico, A., Tagliacollo, C.: Optimal offline extraction of irredundant motif bases. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 360–371. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Apostolico, A., Tagliacollo, C.: Incremental discovery of the irredundant motif bases for all suffixes of a string in O(n 2 log n) time. Theoretical Computer Science 408(2-3), 106–115 (2008)

    Article  Google Scholar 

  6. Arimura, H., Uno, T.: Mining maximal flexible patterns in a sequence. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 307–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohani, O., Walichiewicz, J.: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Morris, M., Nicolas, F., Ukkonen, E.: On the complexity of finding gapped motifs. CoRR, abs/0802.0314 (2008)

    Google Scholar 

  9. Parida, L.: Some results on flexible-pattern discovery. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 33–45. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Parida, L.: Pattern discovery in bioinformatics. Mathematical and Computational Biology Series. Chapman & Hall / CRC, Boca Raton (2008)

    Google Scholar 

  11. Pisanti, N.: Segment-based distances and similarities in genomic sequences. PhD thesis, University of Pisa, Italy (2002)

    Google Scholar 

  12. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.F.: Bases of motifs for generating repeated patterns with wild cards. IEEE Trans. on Computational Biology and Bioinformatics 2(1), 40–50 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics 14(1), 55–67 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Saha, S., Bridges, S., Magbanua, Z.V., Peterson, D.G.: Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 36(7), 2284–2294 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smit, A.F.A., Hubley, R., Green, P.: RepeatMasker Open-3.0. 1996–2004, http://www.repeatmasker.org

  16. Ukkonen, E.: Structural analysis of gapped motifs of a string. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 681–690. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E., Vandin, F. (2009). MADMX: A Novel Strategy for Maximal Dense Motif Extraction. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics