biRNA: Fast RNA-RNA Binding Sites Prediction

  • Hamidreza Chitsaz
  • Rolf Backofen
  • S. Cenk Sahinalp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5724)

Abstract

We present biRNA, a novel algorithm for prediction of binding sites between two RNAs based on minimization of binding free energy. Similar to RNAup approach [30], we assume the binding free energy is the sum of accessibility and the interaction free energies. Our algorithm maintains tractability and speed and also has two important advantages over previous similar approaches: (1) biRNA is able to predict multiple simultaneous binding sites and (2) it computes a more accurate interaction free energy by considering both intramolecular and intermolecular base pairing. Moreover, biRNA can handle crossing interactions as well as hairpins interacting in a zigzag fashion. To deal with simultaneous accessibility of binding sites, our algorithm models their joint probability of being unpaired. Since computing the exact joint probability distribution is intractable, we approximate the joint probability by a polynomially representable graphical model namely a Chow-Liu tree-structured Markov Random Field. Experimental results show that biRNA outperforms RNAup and also support the accuracy of our approach. Our proposed Bayesian approximation of the Boltzmann joint probability distribution provides a powerful, novel framework that can also be utilized in other applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkan, C., Karakoc, E., Nadeau, J.H., Cenk Sahinalp, S., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology 13(2), 267–282 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. J. Mol. Biol. 345, 987–1001 (2005)CrossRefPubMedGoogle Scholar
  3. 3.
    Argaman, L., Altuvia, S.: fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol. 300, 1101–1112 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    Asano, K., Mizobuchi, K.: Structural analysis of late intermediate complex formed between plasmid ColIb-P9 Inc RNA and its target RNA. How does a single antisense RNA repress translation of two genes at different rates? J. Biol. Chem. 275, 1269–1274 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    Bossi, L., Figueroa-Bossi, N.: A small RNA downregulates LamB maltoporin in Salmonella. Mol. Microbiol. 65, 799–810 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    Busch, A., Richter, A.S., Backofen, R.: IntaRNA: Efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24), 2849–2856 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. ACM 47(6), 1028–1047 (2000)CrossRefGoogle Scholar
  8. 8.
    Chen, S., Zhang, A., Blyn, L.B., Storz, G.: MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186, 6689–6697 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25(12), i365–i373 (2009)CrossRefGoogle Scholar
  10. 10.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)CrossRefGoogle Scholar
  11. 11.
    Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks (research note). Artif. Intell. 42(2-3), 393–405 (1990)CrossRefGoogle Scholar
  12. 12.
    Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal 87, 215–226 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Review 49(1), 65–88 (2007)CrossRefGoogle Scholar
  14. 14.
    Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24(13), 1664–1677 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    Geissmann, T.A., Touati, D.: Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23, 396–405 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gottesman, S.: Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics 21(7), 399–404 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Jordan, M.I., Weiss, Y.: Graphical models: probabilistic inference. In: Arbib, M. (ed.) Handbook of Neural Networks and Brain Theory. MIT Press, Cambridge (2002)Google Scholar
  18. 18.
    Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to RNA-RNA interaction prediction. Pattern Recognition 42(4), 531–538 (2009)CrossRefGoogle Scholar
  19. 19.
    Kawamoto, H., Koide, Y., Morita, T., Aiba, H.: Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 61, 1013–1022 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Kolb, F.A., Engdahl, H.M., Slagter-Jger, J.G., Ehresmann, B., Ehresmann, C., Westhof, E., Wagner, E.G., Romby, P.: Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19, 5905–5915 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kolb, F.A., Malmgren, C., Westhof, E., Ehresmann, C., Ehresmann, B., Wagner, E.G., Romby, P.: An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA 6, 311–324 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lu, Z.J., Mathews, D.H.: Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res. 36, 640–647 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    Majdalani, N., Hernandez, D., Gottesman, S.: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol. 46, 813–826 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    Markham, N.R., Zuker, M.: UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    Massé, E., Gottesman, S.: A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99, 4620–4625 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)CrossRefPubMedGoogle Scholar
  27. 27.
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)CrossRefPubMedGoogle Scholar
  28. 28.
    Mneimneh, S.: On the approximation of optimal structures for RNA-RNA interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (to appear)Google Scholar
  29. 29.
    Møller, T., Franch, T., Udesen, C., Gerdes, K., Valentin-Hansen, P.: Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16, 1696–1706 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mückstein, U., Tafer, H., Bernhart, S.H., Hernandez-Rosales, M., Vogel, J., Stadler, P.F., Hofacker, I.L.: Translational control by RNA-RNA interaction: Improved computation of RNA-RNA binding thermodynamics. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds.) BIRD. Communications in Computer and Information Science, vol. 13, pp. 114–127. Springer, Heidelberg (2008)Google Scholar
  31. 31.
    Nussinov, R., Piecznik, G., Grigg, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35, 68–82 (1978)CrossRefGoogle Scholar
  32. 32.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  33. 33.
    Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. 15, 92–101 (2004)PubMedGoogle Scholar
  34. 34.
    Rasmussen, A.A., Eriksen, M., Gilany, K., Udesen, C., Franch, T., Petersen, C., Valentin-Hansen, P.: Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol. Microbiol. 58, 1421–1429 (2005)CrossRefPubMedGoogle Scholar
  35. 35.
    Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Repoila, F., Majdalani, N., Gottesman, S.: Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48, 855–861 (2003)CrossRefPubMedGoogle Scholar
  37. 37.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)CrossRefPubMedGoogle Scholar
  38. 38.
    Schmidt, M., Zheng, P., Delihas, N.: Secondary structures of Escherichia coli antisense micF RNA, the 5’-end of the target ompF mRNA, and the RNA/RNA duplex. Biochemistry 34, 3621–3631 (1995)CrossRefPubMedGoogle Scholar
  39. 39.
    Sharma, C.M., Darfeuille, F., Plantinga, T.H., Vogel, J.: A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Storz, G.: An expanding universe of noncoding RNAs. Science 296(5571), 1260–1263 (2002)CrossRefPubMedGoogle Scholar
  41. 41.
    Tafer, H., Ameres, S.L., Obernosterer, G., Gebeshuber, C.A., Schroeder, R., Martinez, J., Hofacker, I.L.: The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26, 578–583 (2008)CrossRefPubMedGoogle Scholar
  42. 42.
    Tafer, H., Hofacker, I.L.: RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24(22), 2657–2663 (2008)CrossRefPubMedGoogle Scholar
  43. 43.
    Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of secondary structure in ribonucleic acids. Nature 230, 362–367 (1971)CrossRefPubMedGoogle Scholar
  44. 44.
    Vogel, J., Argaman, L., Wagner, E.G., Altuvia, S.: The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271–2276 (2004)CrossRefPubMedGoogle Scholar
  45. 45.
    Walton, S.P., Stephanopoulos, G.N., Yarmush, M.L., Roth, C.M.: Thermodynamic and kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA. Biophys. J. 82, 366–377 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Waterman, M.S., Smith, T.F.: RNA secondary structure: A complete mathematical analysis. Math. Biosc. 42, 257–266 (1978)CrossRefGoogle Scholar
  47. 47.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hamidreza Chitsaz
    • 1
  • Rolf Backofen
    • 2
  • S. Cenk Sahinalp
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Institut für InformatikAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations