Skip to main content

A Simulation Study Comparing Supertree and Combined Analysis Methods Using SMIDGen

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

  • 784 Accesses

Abstract

Supertree methods comprise one approach to reconstructing large molecular phylogenies given estimated source trees for overlapping subsets of the entire set of taxa. These source trees are combined into a single supertree on the full set of taxa using various algorithmic techniques, with the most common being matrix representation with parsimony (MRP). When the data allow, the competing approach is a combined analysis (also known as a “supermatrix” or “total evidence” approach) whereby the different sequence data matrices for each of the different subsets of taxa are concatenated into a single supermatrix, and a tree is estimated on that supermatrix. In this paper, we report an extensive simulation study comparing the supertree methods MRP and weighted MRP against combined analysis methods on large model trees, using a novel simulation methodology (Super-Method Input Data Generator, or SMIDGen), which better reflects biological processes and the practices of systematists. This study shows that combined analysis based upon maximum likelihood outperforms all the other methods, giving especially big improvements when the largest subtree does not contain most of the taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: Assembling the trees of life. Trends Ecol. Evol. 13, 105–109 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Bininda-Emonds, O.R.P., Gittleman, J.L., Steel, M.A.: The (super) tree of life: Procedures, problems, and prospects. Annu. Rev. Ecol. Syst. 33, 265–289 (2002)

    Article  Google Scholar 

  3. Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends in Ecology and Evolution 19, 315–322 (2004)

    Article  PubMed  Google Scholar 

  4. Bininda-Emonds, O.R.P.: Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life. Computational Biology (2004)

    Google Scholar 

  5. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  6. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylo. Evol. 1, 53–58 (1992)

    Article  CAS  Google Scholar 

  7. Ronquist, F.: Matrix representation of trees, redundancy, and weighting. Syst. Biol. 45, 247–253 (1996)

    Article  Google Scholar 

  8. Bininda-Emonds, O.R.P., Sanderson, M.J.: Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Syst. Biol. 50, 565–579 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: Flipping: A supertree construction method. In: Bioconsensus. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 135–160. American Mathematical Society-DIMACS, Providence (2003)

    Google Scholar 

  10. Burleigh, J.G., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: MRF supertrees. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life, pp. 65–86. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  11. Eulenstein, O., Chen, D., Burleigh, J.G., Fernández-Baca, D., Sanderson, M.J.: Performance of flip supertree construction with a heuristic algorithm. Syst. Biol. 53, 299–308 (2004)

    Article  PubMed  Google Scholar 

  12. Lapointe, F.J., Levasseur, C.: Everything you always wanted to know about average consensus and more. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life, pp. 87–106. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  13. Piaggio-Talice, R., Burleigh, J.G., Eulenstein, O.: Quartet supertrees. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 173–191. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  14. Ross, H.A., Rodrigo, A.G.: An assessment of matrix representation with compatibility in supertree construction. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life, pp. 35–64. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  15. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for minimum-flip supertree construction. Evol. Bioinform. 2, 401–410 (2006)

    CAS  Google Scholar 

  16. Criscuolo, A., Berry, V., Douzery, E., Gascuel, O.: SDM: A fast distance-based approach for (super) tree building in phylogenomics. Syst. Biol. 55, 740–755 (2006)

    Article  PubMed  Google Scholar 

  17. Soltis, D.E., Soltis, P.S., Nickrent, D.L., Johnson, L.A., Hahn, W.J., Hoot, S.B., Sweere, J.A., Kuzoff, R.K., Kron, K.A., Chase, M.W.: Angiosperm phylogeny inferred from 18S Ribosomal DNA sequences. Ann. Mo. Bot. Garden 84, 1–49 (1997)

    Article  Google Scholar 

  18. Glenner, H., Hansen, A.J., Sørensen, M.V., Ronquist, F., Huelsenbeck, J.P., Willerslev, E.: Bayesian inference of the metazoan phylogeny: A combined molecular and morphological approach. Current Biology 14, 1644–1649 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K., Browne, W.E., Smith, S.A., Seaver, E., Rouse, G.W., Obst, M., Edgecombe, G.D., Sorensen, M.V., Haddock, S.H.D., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R.M., Wheeler, W.C., Martindale, M.Q., Giribet, G.: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452(7188), 745–749 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Swofford, D.L., Olson, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic Inferrence, 2nd edn., pp. 407–425. Sinauer Associates, Sunderland (1996)

    Google Scholar 

  21. Stamatakis, A.: RAxML-NI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Swofford, D.L.: PAUP*: Phylogenetic analysis using parsimony (* and other methods). Ver. 4. Sinauer Associates, Sunderland (2002)

    Google Scholar 

  23. Ganapathy, G.: Algorithms and Heuristics for Combinatorial Optimization in Phylogeny. PhD thesis, University of Texas at Austin (2006)

    Google Scholar 

  24. Brauer, M.J., Holder, M.T., Dries, L.A., Zwickl, D.J., Lewis, P.O., Hillis, D.M.: Genetic algorithms and parallel processing in maximum-likelihood phylogeny inference. Mol. Biol. Evol. 19, 1717–1726 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Baldwin, J., Fitch, D., De Ley, P., Nadler, S.: The Nematode Branch of the Assembling the Tree of Life Project: NemATOL (2008), http://nematol.unh.edu

  26. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L.: Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Garden 80, 528–580 (1993)

    Article  Google Scholar 

  27. Rambaut, A., Grassly, N.C.: Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238 (1997)

    CAS  PubMed  Google Scholar 

  28. Page, R.D.M.: Taxonomy, supertrees, and the tree of life. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 247–265. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  29. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency and Computation: Practice and Experience 17, 323–356 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swenson, M.S., Barbançon, F., Linder, C.R., Warnow, T. (2009). A Simulation Study Comparing Supertree and Combined Analysis Methods Using SMIDGen. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics