Skip to main content

Networks of Limit Cycle Oscillators with Parametric Learning Capability

  • Chapter
Recent Advances in Nonlinear Dynamics and Synchronization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 254))

Abstract

The fundamental idea that synchronized patterns emerge in networks of interacting oscillators is revisited by allowing a parametric learning mechanism to operate on the local dynamics. The local dynamics consist of stable limit cycle oscillators which, due to mutual interactions, are allowed, via an adaptive process, to permanently modify their frequencies. Adaptivity is made possible by conferring to each oscillator’s frequency the status of an additional degree of freedom. The network of individual oscillators is ultimately driven to a stable synchronized oscillating state which, once reached, survive even if mutual interactions are removed. Such a permanent, plastic type deformation of an initial to a final consensual state is realized by a dissipative mechanism which vanishes once a consensus is established. By considering diffusive couplings between position- and velocity-dependent state variables, we are able to analytically explore the resulting dynamics and in particular to calculate the resulting consensual state. The ultimate consensual state is topology network-independent. However, the interplay between the graph connectivity and the local dynamics does strongly influence the learning rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: Reviews of Modern Physics 77, 137 (2005)

    Google Scholar 

  2. Boccaletti, S., Hwang, D.-U., Chavez, M., Amann, A., Kurths, J., Pecora, L.M.: Physical Review E 74, 016102 (2006)

    Google Scholar 

  3. Chen, M., Shang, Y., Zou, Y., Kurths, J.: Physical Review E 77, 027101-1 (2008)

    Google Scholar 

  4. Cucker, F., Smale, S.: IEEE Transactions on Automatic Control 52, 852 (2007)

    Google Scholar 

  5. Duc, L.H., Ilchmann, A., Siegmund, S., Taraba, P.: Quarterly of Applied Mathematics 1, 137 (2006)

    Google Scholar 

  6. Fiedler, M.: Czechoslovak Mathematical Journal 23, 298 (1973)

    Google Scholar 

  7. Gersho, A., Karafin, B.J.: The Bell System Technical Journal 45, 1689 (1966)

    Google Scholar 

  8. Schweitzer, F., Ebeling, W., Tilch, B.: Physical Review E 64, 211101 (2001)

    Google Scholar 

  9. Hongler, M.-O., Ryter, D.M.: Zeitschrift für Physik B 31, 333 (1978)

    Google Scholar 

  10. Olfati-Saber, R.: Proceedings of the 2007 American Control Conference, p. 4619 (2007)

    Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: Physical Review Letters 80, 2109 (1998)

    Google Scholar 

  12. Righetti, L., Buchli, J., Ijspeert, A.: Physica D 216, 269 (2006)

    Google Scholar 

  13. Baruh, H.: Analytical Dynamics. McGraw-Hill, New York (1999)

    Google Scholar 

  14. Bhatia, N.P., Szegö, G.P.: Dynamical Systems: Stability Theory and Applications. Springer, Heidelberg (1967)

    MATH  Google Scholar 

  15. Blekhman, I.I.: Synchronization in science and technology. ASME Press, New York (1988)

    Google Scholar 

  16. Davis, P.J.: Circulant Matrices. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  17. Horn, R.A., Johnson, C.R.J.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  18. Lakshmanan, M., Rajasekar, S.: Nonlinear dynamics: integrability, chaos, and patterns. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Schweitzer, F.: Brownian Agents and Active Particles. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodriguez, J., Hongler, MO. (2009). Networks of Limit Cycle Oscillators with Parametric Learning Capability. In: Kyamakya, K., Halang, W.A., Unger, H., Chedjou, J.C., Rulkov, N.F., Li, Z. (eds) Recent Advances in Nonlinear Dynamics and Synchronization. Studies in Computational Intelligence, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04227-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04227-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04226-3

  • Online ISBN: 978-3-642-04227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics