Skip to main content

Coupled Oscillator systems for Microwave Applications: Optimized Design Based on the Study and Control of the Multiple Coexisting Solutions in Systems with Symmetry

  • Chapter
Recent Advances in Nonlinear Dynamics and Synchronization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 254))

Abstract

Coupled oscillator arrays have attracted a lot of attention due to their intrinsic synchronization properties that make them suitable for a wide range of microwave and radiofrequency applications. Characteristic applications of such arrays are phase shifters and high frequency generation. Their design however is complicated by their nonlinear nature, which, combined with the symmetry properties of these architectures leads to a rich dynamic behavior consisting of multiple operating modes and complicated stability considerations. This work focuses on linear coupled oscillator arrays for beam steering applications, and N-push oscillator topologies for high frequency generation. Both architectures are examined from the point of view of identifying multiple coexisting solutions and their stability. Practical examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auckland, D.T., Lilly, J., York, R.A.: Analysis of beam scanning and data rate transmission performance of a coupled oscillator phased array. In: IEE Tenth International Conference on Antennas and Propagation (Conf. Publ. No. 436), pp. 245–249 (1997)

    Google Scholar 

  2. Bates, B.D., Khan, P.J.: Stability of multifrequency negative-resistance oscillators. IEEE Trans. Microw. Theory Tech. 32(10), 1310–1318 (1984)

    Article  Google Scholar 

  3. Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through a harmonic balance approach. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(8), 881–890 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, H.C., Cao, X., Mishra, U.K., York, R.A.: Phase noise in coupled oscillators: Theory and experiment. IEEE Trans. Microw. Theory Tech. 45(5), 604–615 (1997)

    Article  Google Scholar 

  5. Choi, J., Mortazawi, A.: Design of push-push and triple-push oscillators for reducing 1/f noise upconversion. IEEE Trans. Microw. Theory Tech. 53(11), 3407–3414 (2005)

    Article  Google Scholar 

  6. Collado, A., Georgiadis, A.: Nonlinear mode analysis and optimization of a triple-push oscillator. IEEE Microw. Wireless Compon. Lett. 18(8), 545–547 (2008)

    Article  Google Scholar 

  7. Collado, A., Ramirez, F., Suarez, A., Pascual, J.: Harmonic-balance analysis and synthesis of coupled-oscillator arrays. IEEE Microw. Wireless Compon. Lett. 14(5), 192–194 (2004)

    Article  Google Scholar 

  8. Collado, A., Sancho, S., Suarez, A.: Semi-analytical formulation for the stability analysis of coexisting solutions in coupled-oscillator systems. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 973–976 (2007)

    Google Scholar 

  9. Collantes, J.M., Lizarraga, I., Anakabe, A., Jugo, J.: Stability verification of microwave circuits through floquet multiplier analysis. In: Proc. IEEE Asia-Pacific Circuits Syst. Conf., pp. 997–1000 (2004)

    Google Scholar 

  10. Dodla, R., Sen, A., Johnston, G.: Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Physical Review E 69 (2004)

    Google Scholar 

  11. Farzaneh, F., Mehrshahi, E.: A novel noise analysis method in microwave oscillators based on harmonic balance. In: Proc. Eur. Microw. Conf., pp. 255–260 (1998)

    Google Scholar 

  12. Fusco, V.F., Drew, S.: Active antenna phase modulator performance. In: Proc. Eur. Microw. Conf., pp. 248–251 (1993)

    Google Scholar 

  13. Georgiadis, A.: Design of coupled oscillator arrays for second harmonic radiation. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1727–1730 (2007)

    Google Scholar 

  14. Georgiadis, A., Collado, A.: Injection locked coupled oscillator arrays. IEEE Microw. Wireless Compon. Lett. 17(12), 900–902 (2007)

    Article  Google Scholar 

  15. Georgiadis, A., Collado, A., Suarez, A.: New techniques for the analysis and design of coupled-oscillator systems. IEEE Trans. Microw. Theory Tech. 11(11), 3864–3877 (2006)

    Article  Google Scholar 

  16. Georgiadis, A., Collado, A., Suarez, A.: Pattern nulling in coupled oscillator antenna arrays. IEEE Trans. Antennas Propag. 55(5), 1267–1274 (2007)

    Article  Google Scholar 

  17. Golubitsky, M., Stewart, I.: Hopf bifurcation with dihedral group symmetry: Coupled nonlinear oscillators. Contemporary Mathematics Multiparameter Bifurcation Theory 56, 131–173 (1986)

    MathSciNet  Google Scholar 

  18. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamic Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  19. Heath, T.: Beam steering of nonlinear oscillator arrays through manipulation of coupling phases. IEEE Trans. Antennas Propag. 52(7), 1833–1842 (2004)

    Article  Google Scholar 

  20. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, 3rd edn. Oxford Univ. Press, Oxford (1999)

    MATH  Google Scholar 

  21. Jugo, J., Portilla, J., Anakabe, A., Suarez, A., Collantes, J.M.: Closed-loop stability analysis of microwave amplifiers. Electron. Lett. 37, 226–228 (2001)

    Article  Google Scholar 

  22. Kim, S., Park, S.H., Ryu, C.: Multistability in coupled oscillator systems with time delay. Physical Review Letters 79(15) (1997)

    Google Scholar 

  23. Kuhn, M.R., Biebl, E.M.: Power combining by means of harmonic injection locking. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 91–94 (2004)

    Google Scholar 

  24. Kurokawa, K.: Noise in synchronized oscillators. IEEE Trans. Microw. Theory Tech. 16(4), 234–240 (1968)

    Article  MathSciNet  Google Scholar 

  25. Kurokawa, K.: Some basic characteristics of broadband resistance oscillator circuits. Bell Syst. Tech. J., 1937–1955 (1969)

    Google Scholar 

  26. Kurokawa, K.: Injection locking of microwave solid-state oscillators. Proc. IEEE 61(10), 1386–1410 (1973)

    Article  Google Scholar 

  27. Kykkotis, C., Hall, P.S., Ghafouri-Shiraz, H., Wake, D.: Modulation effects in active integrated locked antenna oscillator arrays. In: IEE Tenth International Conference on Antennas and Propagation (Conf. Publ. No. 436), pp. 510–513 (1997)

    Google Scholar 

  28. Lai, X., Roychowdhury, J.: Capturing oscillator injection locking via nonlinear phase-domain macromodels. IEEE Trans. Microw. Theory Tech. 52(9), 2251–2261 (2004)

    Article  Google Scholar 

  29. Lynch, J.J., York, R.A.: Synchronization of oscillators coupled through narrowband networks. IEEE Trans. Microw. Theory Tech. 49(2), 237–249 (2001)

    Article  Google Scholar 

  30. Meadows, B.K., Heath, T.H., Neff, J.D., Brown, E.A., Fogliatti, D.W., Gabbay, M., In, V., Hasler, P., Deweerth, S.P., Ditto, W.L.: Nonlinear antenna technology. Proc. IEEE 90(5), 882–897 (2002)

    Article  Google Scholar 

  31. Ngoya, E., Larcheveque, R.: Envelope transient analysis: A new method for the transient and steady state analysis of microwave communication circuits and systems. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1365–1368 (1995)

    Google Scholar 

  32. Nogi, S., Lin, J., Itoh, T.: Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators. IEEE Trans. Microw. Theory Tech. 41(10), 1827–1837 (1993)

    Article  Google Scholar 

  33. Pogorzelski, R.J.: On the design of coupling networks for coupled oscillator arrays. IEEE Trans. Antennas Propag. 51(4), 794–801 (2003)

    Article  Google Scholar 

  34. Pozar, D.: Microwave Engineering, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  35. Redy, D.R., Sen, A., Johnston, G.: Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Physical Review Letters 85(16) (2000)

    Google Scholar 

  36. Rizzoli, V., Neri, A.: State of the art and present trends in nonlinear microwave CAD techniques. IEEE Trans. Microw. Theory Tech. 36(2), 343–365 (1988)

    Article  Google Scholar 

  37. Rohde, U.L., Poddar, A.K., Böck, G.: The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization. Wiley, New York (2005)

    Book  Google Scholar 

  38. Rohde, U.L., Poddar, A.K., Schoepf, J., Rebel, R., Patel, P.: Low noise low cost ultra wideband N-push VCO. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 1171–1174 (2005)

    Google Scholar 

  39. Sharrit, D.: Method for simulating a circuit, U.S. Patent 5588142 (1996)

    Google Scholar 

  40. Suarez, A., Collado, A., Ramirez, F.: Harmonic-balance techniques for the design of coupled-oscillator systems in both unforced and injection-locked operation. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 8887–8904 (2005)

    Google Scholar 

  41. Suarez, A., Quere, R.: Stabiliry Analysis of Nonlinear Microwave Circuits. Artech House, Norwood (2003)

    Google Scholar 

  42. Tang, Y., Wang, H.: Triple-push oscillator approach: Theory and experiments. IEEE J. Solid-State Circuits 36(10), 1472–1479 (2001)

    Article  Google Scholar 

  43. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  44. Vanassche, P., Gielen, G.G.E., Sansen, W.: Behavioral modeling of (coupled) harmonic oscillators. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 22(8), 1017–1026 (2003)

    Article  Google Scholar 

  45. Yen, S.C., Chu, T.H.: An Nth-harmonic oscillator using an N-push coupled oscillator array with voltage-clamping circuits. In: IEEE MTT-S Int. Microw. Symp. Dig., pp. 2169–2172 (2003)

    Google Scholar 

  46. York, R.A., Liao, P., Lynch, J.J.: Oscillator array dynamics with broadband N-port coupling networks. IEEE Trans. Microw. Theory Tech. 42(11), 2040–2042 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collado, A., Georgiadis, A. (2009). Coupled Oscillator systems for Microwave Applications: Optimized Design Based on the Study and Control of the Multiple Coexisting Solutions in Systems with Symmetry. In: Kyamakya, K., Halang, W.A., Unger, H., Chedjou, J.C., Rulkov, N.F., Li, Z. (eds) Recent Advances in Nonlinear Dynamics and Synchronization. Studies in Computational Intelligence, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04227-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04227-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04226-3

  • Online ISBN: 978-3-642-04227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics