Skip to main content

Combining Theories with Shared Set Operations

  • Conference paper
Frontiers of Combining Systems (FroCoS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5749))

Included in the following conference series:

Abstract

Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theorem and apply it to show the decidability of the satisfiability problem for a class of formulas obtained by applying propositional connectives to formulas belonging to: 1) Boolean Algebra with Presburger Arithmetic (with quantifiers over sets and integers), 2) weak monadic second-order logic over trees (with monadic second-order quantifiers), 3) two-variable logic with counting quantifiers (ranging over elements), 4) the Bernays-Schönfinkel-Ramsey class of first-order logic with equality (with ∃ * ∀ * quantifier prefix), and 5) the quantifier-free logic of multisets with cardinality constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Springer (Kluwer), Heidelberg (2002)

    Book  MATH  Google Scholar 

  2. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 158. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)

    Article  Google Scholar 

  4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Basin, D., Friedrich, S.: Combining WS1S and HOL. In: FroCoS (1998)

    Google Scholar 

  6. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  7. Boyer, R.S., Moore, J.S.: Integrating decision procedures into heuristic theorem provers: A case study of linear arithmetic. In: Machine Intelligence, vol. 11. Oxford University Press, Oxford (1988)

    Google Scholar 

  8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Feferman, S., Vaught, R.L.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Fontaine, P.: Combinations of theories and the bernays-schönfinkel-ramsey class. In: VERIFY (2007)

    Google Scholar 

  11. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 263–278. Springer, Heidelberg (2009)

    Google Scholar 

  12. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann, San Francisco (1992)

    Google Scholar 

  13. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3-4), 221–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific Journal of Mathematics 16(2), 285–296 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klaedtke, F., Rueß, H.: Parikh automata and monadic second-order logics with linear cardinality constraints. Technical Report 177, Institute of Computer Science at Freiburg University (2002)

    Google Scholar 

  17. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)

    Google Scholar 

  18. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department of Computer Science. University of Aarhus (January 2001)

    Google Scholar 

  19. Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger Arithmetic. J. of Automated Reasoning (2006)

    Google Scholar 

  21. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. In: PDPAR. ENTCS, vol. 144(2) (2006)

    Google Scholar 

  24. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM TOPLAS 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  25. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) 11th CADE, June 1992. LNCS (LNAI), vol. 607, pp. 748–752 (1992)

    Google Scholar 

  26. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14(3), 369–395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2-30, 264–286 (1930), doi:10.1112/plms/s2-30.1.264

    Article  MathSciNet  MATH  Google Scholar 

  31. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical Systems Theory 2(1), 57–81 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Th. Comp. Sc. 290(1), 291–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tinelli, C., Zarba, C.: Combining nonstably infinite theories. Journal of Automated Reasoning 34(3) (2005)

    Google Scholar 

  34. Wies, T.: Symbolic Shape Analysis. PhD thesis. University of Freiburg (2009)

    Google Scholar 

  35. Wies, T., Piskac, R., Kuncak, V.: On Combining Theories with Shared Set Operations. Technical Report LARA-REPORT-2009-002, EPFL (May 2009)

    Google Scholar 

  36. Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures. In: ACM Conf. Programming Language Design and Implementation, PLDI (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wies, T., Piskac, R., Kuncak, V. (2009). Combining Theories with Shared Set Operations. In: Ghilardi, S., Sebastiani, R. (eds) Frontiers of Combining Systems. FroCoS 2009. Lecture Notes in Computer Science(), vol 5749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04222-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04222-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04221-8

  • Online ISBN: 978-3-642-04222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics