Advertisement

Cost-Sensitive Learning Based on Bregman Divergences

  • Raúl Santos-Rodríguez
  • Alicia Guerrero-Curieses
  • Rocío Alaiz-Rodríguez
  • Jesús Cid-Sueiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5781)

Abstract

This paper analyzes the application of a particular class of Bregman divergences to design cost-sensitive classifiers for multiclass problems. We show that these divergence measures can be used to estimate posterior probabilities with maximal accuracy for the probability values that are close to the decision boundaries. Asymptotically, the proposed divergence measures provide classifiers minimizing the sum of decision costs in non-separable problems, and maximizing a margin in separable MAP problems.

Keywords

Cost sensitive learning Bregman divergence posterior class probabilities maximum margin 

References

  1. 1.
    Santos-Rodríguez, R., Guerrero-Curieses, A., Alaiz-Rodríguez, R., Cid-Sueiro, J.: Cost-sensitive learning based on Bregman divergences. Machine Learning (2009) doi: 10.1007/s10994-009-5132-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raúl Santos-Rodríguez
    • 1
  • Alicia Guerrero-Curieses
    • 2
  • Rocío Alaiz-Rodríguez
    • 3
  • Jesús Cid-Sueiro
    • 1
  1. 1.Department of Signal Theory and CommunicationsUniversidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Department of Signal Theory and CommunicationsUniversidad Rey Juan CarlosFuenlabrada (Madrid)Spain
  3. 3.Department of Electrical and Electronic EngineeringUniversidad de LeónLeónSpain

Personalised recommendations