Advertisement

Color Features Performance Comparison for Image Retrieval

  • Daniele Borghesani
  • Costantino Grana
  • Rita Cucchiara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

This paper proposes a comparison of color features for image retrieval. In particular the UCID image database has been employed to compare the retrieval capabilities of different color descriptors. The set of descriptors comprises global and spatially related features, and the tests show that HSV based global features provide the best performance at varying brightness and contrast settings.

Keywords

color features HSV image retrieval feature comparison 

References

  1. 1.
    Chang, S.-F., Kennedy, L.S., Zavesky, E.: Columbia University’s semantic video search engine. In: Proceedings of the 6th ACM international conference on Image and video retrieval, Amsterdam, The Netherlands, pp. 643–643 (2007)Google Scholar
  2. 2.
    Natsev, A., Tešić, J., Xie, L., Yan, R., Smith, J.R.: IBM multimedia search and retrieval system. In: Proceedings of the 6th ACM international conference on Image and video retrieval, Amsterdam, The Netherlands, p. 645 (2007)Google Scholar
  3. 3.
    Rooij, C.G.M.: Mediamill: Semantic video browsing using the rotorbrowser. In: Proceedings of the ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands (July 2007)Google Scholar
  4. 4.
    Grana, C., Vezzani, R., Bulgarelli, D., Barbieri, F., Cucchiara, R., Bertini, M., Torniai, C., Del Bimbo, A.: PEANO: Pictorial Enriched ANnotation of VideO. Accepted for publication. In: Proceedings of the 14th ACM international Conference on Multimedia, Santa Barbara, CA, United States, October 23-27 (2006)Google Scholar
  5. 5.
    Information technology - Multimedia content description interface - Part 3: Visual, ISO/IEC Std. 15 938-3:2003 (2003)Google Scholar
  6. 6.
    Lei, Z., Fuzong, L., Bo, Z.: A CBIR method based on color-spatial feature. In: TENCON 1999. Proceedings of the IEEE Region 10 Conference, vol. 1, pp. 166–169 (1999)Google Scholar
  7. 7.
    Huang, J., et al.: Image indexing using color correlogram. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)Google Scholar
  8. 8.
    Ojala, T., Rautiainen, M., Matinmikko, E., Aittola, M.: Semantic image retrieval with HSV correlograms. In: Proc. 12th Scandinavian Conference on Image Analysis, Bergen, Norway, pp. 621–627 (2001)Google Scholar
  9. 9.
    Cinque, L., Levialdi, S., Olsen, K.A., Pellicano, A.: Color-based image retrieval using spatial-chromatic histograms. IEEE International Conference on Multimedia Computing and Systems 2, 969–973 (1999)CrossRefGoogle Scholar
  10. 10.
    Hurvich, L., Jameson, D.: An opponent-process theory of color vision. Psychological Review 64, 384–390 (1957)CrossRefGoogle Scholar
  11. 11.
    Won, C.S., Park, D.K., Park, S.-J.: Efficient Use of MPEG-7 Edge Histogram Descriptor. ETRI Journal 24(1), 23–30 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tseng, D.C., Chang, C.H.: Color segmentation using perceptual attributes. In: Proceedings of 11th IAPR International conference on Pattern Recognition, Vol.III. Conference C: Image, Speech and Signal Analysis, pp. 228–231 (1992)Google Scholar
  13. 13.
    Seaborn, M., Hepplewhite, L., Stonham, J.: Fuzzy colour category map for content based image retrieval. In: Proceedings of the British Machine Vision Conference, BMVC 1999 (1999)Google Scholar
  14. 14.
    Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings of the International Conference on Image Processing, vol. 2, pp.II-589- II-592 (2002)Google Scholar
  15. 15.
    Eidenberger, H.: Statistical analysis of MPEG-7 image descriptions. ACM Multimedia Systems Journal 10(2), 84–97 (2004)CrossRefGoogle Scholar
  16. 16.
    Grana, C., Vezzani, R., Cucchiara, R.: Enhancing HSV Histograms with Achromatic Points Detection for Video Retrieval. In: Proceedings of ACM International Conference on Image and Video Retrieval, CIVR 2007 pp.302–308 (2007)Google Scholar
  17. 17.
    Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Proc. SPIE, Storage and Retrieval Methods and Applications for Multimedia 2004, San Jose, USA, pp. 472–480 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniele Borghesani
    • 1
  • Costantino Grana
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations