Advertisement

Detection of Duplicated Regions in Tampered Digital Images by Bit-Plane Analysis

  • Edoardo Ardizzone
  • Giuseppe Mazzola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

In this paper we present a new method for searching duplicated areas in a digital image. The goal is to detect if an image has been tampered by a copy-move process. Our method works within a convenient domain. The image to be analyzed is decomposed in its bit-plane representation. Then, for each bit-plane, block of bits are encoded with an ASCII code, and a sequence of strings is analyzed rather than the original bit-plane. The sequence is lexicographically sorted and similar groups of bits are extracted as candidate areas, and passed to the following plane to be processed. Output of the last planes indicates if, and where, the image is altered.

Keywords

Image Forensics Image Analysis Bit-Plane Decomposition Duplication Detection Image Forgeries 

References

  1. 1.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of Copy-Move Forgery in Digital Images. In: Proc. Digital Forensic Research Workshop, Cleveland, OH (August 2003)Google Scholar
  2. 2.
    Mahdian, B., Saic, S.: Detection of Copy–Move Forgery Using a Method Based on Blur Moment Invariants, Forensic Science International, vol. 171(2), pp. 180–189Google Scholar
  3. 3.
    Popescu, A., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Transactions on Signal Processing 53(10), 3948–3959 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Popescu, A.C., Farid, H.: Exposing Digital Forgeries By Detecting Traces of Re-Sampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)CrossRefGoogle Scholar
  5. 5.
    Ng, T.T., Chang, S.F., Sun, Q.: Blind Detection of Photomontage Using Higher Order Statistics. In: IEEE International Symposium on Circuits and Systems, Vancouver, Canada (May 2004)Google Scholar
  6. 6.
    Wang, R.Z., Lin, C.F., Lin, J.C.: Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognition 34, 671–683 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kamata, S., Eason, R.O., Kawaguchi, E.: Depth-First Coding For Multivalued Pictures Using Bit-Plane Decomposition. IEEE Transactions on Communications 43(5), 1961–1969 (1995)CrossRefGoogle Scholar
  8. 8.
    Galatsanos, N.P., Yu, S.S.: Binary Decompositions For High-Order Entropy Coding of Grayscale Images. IEEE Transactions on Circuits And Systems For Video Technology 6, 21–31 (1996)CrossRefGoogle Scholar
  9. 9.
    García-Sevilla, P., Petrou, M., Kamata, S.: The use of Boolean model for texture analysis of grey images. Computer Vision and Image Understanding 74, 227–235 (1999)CrossRefGoogle Scholar
  10. 10.
    Ardizzone, E., Dindo, H., Mazzola, G.: Texture Synthesis for Digital Restoration in the Bit-Plane Representation. In: The Third IEEE International Conference on Signal-Image Technology & Internet–Based Systems 2007, Shangai, China, December 16-19 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Edoardo Ardizzone
    • 1
  • Giuseppe Mazzola
    • 1
  1. 1.Dipartimento di Ingegneria Informatica (DINFO)Università degli Studi di PalermoPalermoItaly

Personalised recommendations