Image Quality Assessment Based on Multi-scale Geometric Analysis

  • Mingna Liu
  • Xin Yang
  • Yanfeng Shang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


A novel objective full-reference image quality assessment metric based on Multi-scale Geometric Analysis (MGA) of contourlet transform is proposed. Contourlet transform has excellent properties for image representation, such as multiresolution, localization and directionality, which are the key characteristics of human vision system. Utilizing multiresolution and directionality of MGA, we extract the distortion of structural information from different vision scale and edge direction. The degradation of image quality is evaluated based on the defined energy of structural distortion. Performance experiments are made on professional image quality database with five different distortion types. Compared with some state-of-the-art measures, the results demonstrate that the proposed method improves accuracy and robustness of image quality prediction.


Image quality assessment contourlet transform image structure 


  1. 1.
    Watson, A.B.: DCT quantization matrices visually optimized for individual images. Human Vision, Visual Processing, and Digital Display IV (1993)Google Scholar
  2. 2.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004)CrossRefGoogle Scholar
  3. 3.
    Sheikh, H.R., Bovik, A.C., de Veciana, G.: An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics. IEEE Trans. Image Process 14(12), 2117–2128 (2005)CrossRefGoogle Scholar
  4. 4.
    Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process 15(2), 430–444 (2006)CrossRefGoogle Scholar
  5. 5.
    Chandler, D.M., Hemami, S.S.: VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images. IEEE Trans. Image Process 16(9), 2284–2298 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Trans. Image Process 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of the 37th IEEE asilomar conference on signals, systems and computers, November 9-12 (2003)Google Scholar
  8. 8.
    Cands, E.J.: Ridgelets:Theory and Applications. Department of statistics, Stanford University, USA (1998)Google Scholar
  9. 9.
    Do, M.N.: Contourlets and Sparse Image Expasions. Proceedings of SPIE - The International Society for Optical Engineering 5207(2), 560–570 (2003)Google Scholar
  10. 10.
    Donoho, D.L., Duncan, M.R.: Digital curvelet transform: strategy, implementation and experiments. In: Proc. Aerosense 2000, Wavelet Applications VII, SPIE, vol.4056, pp. 12-29 (2000)Google Scholar
  11. 11.
    Do, M.N., Vetterli, M.: The Contourlet Transform: An Efficient Directional Multiresolution Image Representation. IEEE Trans. Image Process 14(12), 2091–2106 (2005)CrossRefGoogle Scholar
  12. 12.
    Levine, M.W.: Fundamentals of sensation and perception, 3rd edn. Oxford University Press, New York (2000)Google Scholar
  13. 13.
    van den branden Lambrecht, C.J., Verscheure, O.: Perceptual quality measure suing a spatio-temporal model of the huamn visual system. In: Bhaskaran, V., Sijstermans, F., Panchanathan, S. (eds.) Digital Video Compression: Algorithms and Technologies, proc. SPIE, San Jose, CA, vol. 2668, pp. 450–461 (1996)Google Scholar
  14. 14.
  15. 15.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Image and Video Quality Assessment Research at LIVE,
  16. 16.
    VQEG, Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II (August 2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mingna Liu
    • 1
  • Xin Yang
    • 1
  • Yanfeng Shang
    • 2
  1. 1.Institute of Image Processing and Pattern RecognitionShanghai Jiaotong UniversityP.R. China
  2. 2.Department of Electronics and InformaticsVrije Universiteit Brussel, IBBTBrusselBelgium

Personalised recommendations