Objective Quality Assessment Measurement for Typhoon Cloud Image Enhancement

  • Changjiang Zhang
  • Juan Lu
  • Jinshan Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


There are kinds of enhancement methods for satellite image, however, visual quality of them are basically assessed by human eyes. This can result in wrong identification. This will result in wrong prediction for center and intensity of the typhoon. It is necessary to find an objective measure to evaluate the visual quality for enhanced typhoon cloud image. In order to solve this problem, we give an objective assessment measurement based on information, contrast and peak-signal-noise-ratio. We design an experiment to certify the proposed measure by using the typhoon cloud images which are provided by China Meteorological Administration, China National Satellite Meteorological Center.


Assessment typhoon satellite image enhancement 


  1. 1.
    Albertz, J., Zelianeos, K.: Enhancement of satellite image data by data cumulation. Journal of Photogrammetry and Remote Sensing 45 (1990)Google Scholar
  2. 2.
    Fernandez-Maloigne, C.: Satellite images enhancement. In: Proceedings-International Symposium on Automotive Technology & Automation, vol. 3, pp. 210–215 (1990)Google Scholar
  3. 3.
    Bekkhoucha, A., Smolarz, A.: Technique of images contrast enhancement: an application to satellite and aerial images. Automatique Productique Informatique Industrielle 26, 335–353 (1992)zbMATHGoogle Scholar
  4. 4.
    Karantzalos, K.G.: Combining anisotropic diffusion and alternating sequential filtering for satellite image enhancement and smoothing. In: Proceedings of SPIE – Image and Signal Processing for Remote Sensing IX, vol. 5238, pp. 461–468 (2004)Google Scholar
  5. 5.
    Wan, Y., Shi, D.: Joint Exact Histogram Specification and Image Enhancement Through the Wavelet Transform. IEEE Transactions on Image Processing 16, 2245–2250 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Temizel, A., Vlachos, T.: Wavelet domain image resolution enhancement. IEEE Proceedings Vision, Image and Signal Processing 153, 25–30 (2006)CrossRefGoogle Scholar
  7. 7.
    Xiao, D., Ohya, J.: Contrast enhancement of color images based on wavelet transform and human visual system. In: Proceedings of the IASTED International Conference on Graphics and Visualization in Engineering, pp. 58–63 (2007)Google Scholar
  8. 8.
    Heric, D., Potocnik, B.: Image enhancement by using directional wavelet transform. Journal of Computing and Information Technology – CIT 14, 299–305 (2006)CrossRefGoogle Scholar
  9. 9.
    Ercelebi, E., Koc, S.: Lifting-based wavelet domain adaptive Wiener filter for image enhancement. IEEE Proceedings Vision, Image and Signal Processing 153, 31–36 (2006)CrossRefGoogle Scholar
  10. 10.
    Zeng, P., Dong, H., Chi, J., Xu, X.: An approach for wavelet based image enhancement. In: 2004 IEEE International Conference on Robotics and Biomimetics, pp. 574–577 (2004)Google Scholar
  11. 11.
    L. Gaoyong, O. David, H. Chris: Real-time wavelet denoising with edge enhancement for medical x-ray imaging. Proceedings of SPIE - The International Society for Optical Engineering, vol.6063, pp. 606303 (2006) Google Scholar
  12. 12.
    Belousov, A.A., Spitsyn, V.G., Sidorov, D.V.: Applying Wavelets and Evolutionary algorithms to automatic image enhancement. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 6522, pp. 652210 (2006)Google Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Skith, H.R., Simoncelli, E.P.: Simoncelli: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Changjiang, Z., Xiaodong, W., Haoran, Z., Chunjiang, D.: An anti-noise algorithm for enhancing global and local contrast for infrared image. International Journal of Wavelet, Multi-resolution and Information Processing 5(1), 101–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laine, A.F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Transactions on Medical Imaging 13(4), 725–752 (1994)CrossRefGoogle Scholar
  16. 16.
    Ying-Qian, W., Pei-Jun, D., Peng-Fei, S.: Research on wavelet-based algorithm for image contrast enhancement. Wuhan University Journal of Natural Sciences 9, 46–50 (2004)CrossRefGoogle Scholar
  17. 17.
    Zong, X., Laine, A.F.: De-noising and contrast enhancement via wavelet shrinkage and nonlinear adaptive gain. In: Published in wavelet applications III, proceedings of SPIE, vol. 2762, pp. 566–574 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Changjiang Zhang
    • 1
  • Juan Lu
    • 1
  • Jinshan Wang
    • 1
  1. 1.College of Mathematics, Physics and Information EngineeringZhejiang Normal UniversityJinhuaChina

Personalised recommendations