Advertisement

A New Technique for Image Magnification

  • Carlo Arcelli
  • Maria Frucci
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

A discrete technique for image magnification is presented, which produces the resulting image in one scan of the input image and does not require any threshold. The technique allows the user to magnify an image with any integer zooming factor. The performance of the algorithm is evaluated by using the standard criterion based on the Peak Signal to Noise Ratio PSNR. The obtained results are visually good, since artifacts do not significantly affect the magnified images.

Keywords

Gray Level Input Image Image Magnification Bilinear Interpolation Bicubic Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Trans. on Medical Imaging 18(11), 1049–1075 (1999)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Wu, X.: An edge guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. on Image Processing 15(8), 2226–2238 (2006)CrossRefGoogle Scholar
  3. 3.
    Schultz, R.R., Stevenson, R.L.: A Bayesian approach to image expansion for improved definition. IEEE Trans. on Image Processing 3(3), 233–242 (1994)CrossRefGoogle Scholar
  4. 4.
    Carey, W.K., Chuang, D.B., Hemami, S.S.: Regularity preserving image Interpolation. IEEE Trans. on Image Processing 8(9), 1293–1297 (1999)CrossRefGoogle Scholar
  5. 5.
    Mitra, S.K., Murthy, C.A., Kundu, M.K.: A technique for image magnification using partitioned iterative function system. Pattern Recognition 33(7), 1119–1133 (2000)CrossRefGoogle Scholar
  6. 6.
    Chung, K.H., Fung, Y.H., Chan, Y.H.: Image enlargement using fractal. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 273–276 (2003)Google Scholar
  7. 7.
    Lai, C.M., Lam, K.M., Siu, W.C.: An efficient fractal-based algorithm for image magnification, proceedings. In: Proc. Int. Symp. on Intelligent Multimedia, Video and Speech Processing, pp. 571–574 (2004)Google Scholar
  8. 8.
    Tsai, A., Yezzi Jr., A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Tschumperle, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(4), 506–517 (2005)CrossRefGoogle Scholar
  10. 10.
    Thurnhofer, S., Mitra, S.: Edge-enhanced image zooming. Optical Engineering 35(7), 1862–1870 (1996)CrossRefGoogle Scholar
  11. 11.
    Battiato, S., Gallo, G., Stanco, F.: A locally adaptive zooming algorithm for digital images. Image and Vision Computing 20, 805–812 (2002)CrossRefGoogle Scholar
  12. 12.
    Zhang, X., Lam, K.-M., Shen, L.: Image magnification based on a blockwise adaptive Markov random field model. Image and Vision Computing 26, 1277–1284 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carlo Arcelli
    • 1
  • Maria Frucci
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Institute of Cybernetics “E. Caianiello”, CNRPozzuoli (Naples)Italy

Personalised recommendations