Advertisement

Reconnecting Broken Ridges in Fingerprint Images

  • Nadia Brancati
  • Maria Frucci
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

In this paper, we present a new method for reconnecting broken ridges in fingerprint images. The method is based on the use of a discrete directional mask and on the standard deviation of the gray-levels to determine ridge direction. The obtained direction map is smoothed by counting the occurrences of the directions in a sufficiently large window. The fingerprint image is, then, binarized and thinned. Linking paths to connect broken ridges are generated by using a morphological transformation to guide the process.

Keywords

Termination Point Fingerprint Image Partition Region Significant Extreme Watershed Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wu, C., Shi, Z., Govindaraju, V.: Fingerprint image enhancement method using directional median filter. In: Proc. SPIE 2004, vol. 5404, pp. 66–75 (2004)Google Scholar
  2. 2.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. PAMI 20(8), 777–789 (1998)CrossRefGoogle Scholar
  3. 3.
    Areekul, V., Watchareeruetai, U., Suppasriwasuseth, K., Tantaratana, S.: Separable Gabor filter realization for fast fingerprint enhancement. In: Proc. ICIP 2005, vol. 3, pp. 253–256 (2005)Google Scholar
  4. 4.
    Yang, J., Liu, L., Jiang, T., Fan, Y.: A modified Gabor filter design method for fingerprint image enhancement. Pattern Recognition Letters 24(12), 1805–1817 (2003)CrossRefGoogle Scholar
  5. 5.
    Sherlock, B.G., Monro, D.M., Millard, K.: Fingerprint Enhancement by Directional Fourier Filtering. IEEE Proc. – Visual Image Signal Processing 241(2), 87–94 (1994)CrossRefGoogle Scholar
  6. 6.
    Ikonomopoulos, A., Unser, M.: A Directional Filtering Approach to Texture Discrimination. In: Proc. Seventh International Conference on Pattern Recognition, pp. 87–89 (1984)Google Scholar
  7. 7.
    Willis, A.J., Myers, L.: A Cost-Effective Fingerprint Recognition System for Use with Low-Quality Prints and Damaged Fingertips. Pattern Recognition 34, 255–270 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jain, A.K., Lin, H., Bolle, R.: On-line Fingerprint Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  9. 9.
    Hong, L.: Automatic Personal Identification Using Fingerprints, Ph.D Dissertation (1998)Google Scholar
  10. 10.
    Rao, A.: A Taxonomy for Texture Description and Identification. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Stock, R.M., Swonger, C.W.: Development and Evaluation of a Reader of Fingerprint Minutiae, Technical Report CAL No. XM-2478-X-1, pp. 13–17 (1969)Google Scholar
  12. 12.
    Candela, G.T., Grother, P.J., Watson, C.I., Wilkinson, R.A., Wilson, C.L.: PCASYS – A Pattern-Level Classification Automation System for Fingerprints, Technical Report (1995)Google Scholar
  13. 13.
    Eun-Kyung, Y., Sung-Bae, C.: Adaptive Fingerprint Image Enhancement with Fingerprint Image Quality Analysis. Image and Vision Computing 24, 101–110 (2006)CrossRefGoogle Scholar
  14. 14.
    Madhusoodhanan, P., Sumantra Dutta, R.: Robust Fingerprint Classification Using an Eigen Block Directional Approach. In: Indian Conference on Computer Vision, Graphics and Image Processing, ICVIGIP 2004 (2004)Google Scholar
  15. 15.
    Oliveira, M.A., Leite, N.J.: A Multiscale Directional Operator and Morphological Tools for Reconnecting Broken Ridges in Fingerprint Images. Pattern Recognition 41(1), 367–377 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sanniti di Baja, G., Thiel, E.: Skeletonization Algorithm Running on Path- Based Distance Maps. Image and Vision Computing 14, 47–57 (1996)CrossRefGoogle Scholar
  17. 17.
    Roerdink, J.B.T.M., Meijster, A.: The Watershed Transform: Definitions. Algorithms and Parallelization Strategies, Fundamenta Informaticae 41, 187–228 (2001)zbMATHGoogle Scholar
  18. 18.
    Beucher, S., Meyer, F.: The Morphological Approach to Segmentation: the Watershed Transformation. In: Mathematical Morphology in Image Processing, ch. 12, pp. 433–481. Marcel Dekker, New York (1992)Google Scholar
  19. 19.
    Meyer, F.: Color Image Segmentation. In: Proceedings of the International Conference on Image Processing and its Applications, pp. 303–306 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nadia Brancati
    • 1
  • Maria Frucci
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Institute of Cybernetics “E. Caianiello”, CNRPozzuoliItaly

Personalised recommendations