Advertisement

A Real-Time Occlusion Aware Hardware Structure for Disparity Map Computation

  • Christos Georgoulas
  • Ioannis Andreadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Many machine vision applications deal with depth estimation in a scene. Disparity map recovery from a stereo image pair has been extensively studied by the computer vision community. Previous methods are mainly restricted to software based techniques on general-purpose architectures, presenting relatively high execution time due to the computationally complex algorithms involved. In this paper a new hardware module suitable for real-time disparity map computation module is realized. This enables a hardware based occlusion-aware parallel-pipelined design, implemented on a single FPGA device with a typical operating frequency of 511 MHz. It provides accurate disparity map computation at a rate of 768 frames per second, given a stereo image pair with a disparity range of 80 pixels and 640x480 pixel spatial resolution. The proposed method allows a fast disparity map computational module to be built, enabling a suitable module for real-time stereo vision applications.

Keywords

FPGA-hardware implementation occlusions real–time imaging disparity maps color image processing 

References

  1. 1.
    Barnard, S.T., Thompson, W.B.: Disparity analysis of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 333–340 (1980)CrossRefGoogle Scholar
  2. 2.
    Di Stefano, L., Marchionni, M., Mattoccia, S.: A fast area-based stereo matching algorithm. Image and Vision Computing 22(12), 983–1005 (2004)CrossRefGoogle Scholar
  3. 3.
    Muhlmann, K., Maier, D., Hesser, J., Manner, R.: Calculating dense disparity maps from color stereo images, an efficient implementation. Int. J. Comput. Vision 47(1-3), 79–88 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jordan, J.R., Bovik, A.C.: Using chromatic information in edge-based stereo correspondence. Computer Vision, Graphics, and Image Processing: Image Understanding 54(1), 98–118 (1991)zbMATHGoogle Scholar
  5. 5.
    Baumberg, A.: Reliable feature matching across widely separated views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 774–781 (2000)Google Scholar
  6. 6.
    Hirschmuller, H.: Improvements in Real-Time Correlation-Based Stereo Vision. In: Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 141–148 (2001)Google Scholar
  7. 7.
    Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. IEEE Transactions on Image Processing 25, 993–1008 (2003)Google Scholar
  8. 8.
    Georgoulas, C., Kotoulas, L., Sirakoulis, G., Andreadis, I., Gasteratos, A.: Real-Time Disparity Map Computation Module. Journal of Microprocessors & Microsystems 32(3), 159–170 (2008)CrossRefGoogle Scholar
  9. 9.
    Georgoulas, C., Andreadis, I.: A real-time fuzzy hardware structure for disparity map computation. Submitted to Journal of Real-Time Image ProcessingGoogle Scholar
  10. 10.
    Chang, C., Chatterjee, S., Kube, P.R.: On an Analysis of Static Occlusion in Stereo Vision. In: Proceedings of Computer Vision and Pattern Recognition, pp. 722–723 (1991)Google Scholar
  11. 11.
    Fua, P.: A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features. Machine Vision and Applications 6(1), 35–49 (1993)CrossRefGoogle Scholar
  12. 12.
    Bhat, D.N., Nayar, S.K.: Ordinal Measures for Image Correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(4), 415–423 (1998)CrossRefGoogle Scholar
  13. 13.
    Sara, R., Bajcsy, R.: On Occluding Contour Artifacts in Stereo Vision. In: Proceedings of Computer Vision and Pattern Recognition, pp. 852–857 (1997)Google Scholar
  14. 14.
    Belhumeur, P.N.: A Bayesian Approach to Binocular Stereopsis. Int. J. Computer Vision 19(3), 23–260 (1996)CrossRefGoogle Scholar
  15. 15.
    Birchfield, S., Tomasi, C.: Depth Discontinuities by Pixel-to- Pixel Stereo. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1073–1080 (1998)Google Scholar
  16. 16.
    Faugeras, O., et al.: Real-time correlation-based stereo: algorithm, implementations and application. Technical Report RR 2013, INRIA (1993)Google Scholar
  17. 17.
    Konolige, K.: Small vision systems: Hardware and implementation. In: 8th International Symposium on Robotics Research, Hayama, Japan, pp. 203–212. Springer, London (1997)Google Scholar
  18. 18.
    Matthies, L., Kelly, A., Litwin, T.: Obstacle detection for unmanned ground vehicles: A progress report. In: International Symposium of Robotics Research, Munich, Germany (1995)Google Scholar
  19. 19.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1-3), 7–42 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Leeser, M., Hauck, S., Tessier, R.: Editorial: field-programmable gate arrays in embedded systems. EURASIP Journal on Embedded Systems (1), 11 (2006)Google Scholar
  21. 21.
    Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics hardware. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 924–931 (2005)Google Scholar
  22. 22.
    Kim, J.C., Lee, K.M., Choi, B.T., Lee, S.U.: A dense stereo matching using two-pass dynamic programming with generalized ground control points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1075–1082 (2005)Google Scholar
  23. 23.
    Gong, M., Yang, Y.H.: Real-Time Stereo Matching Using Orthogonal Reliability-Based Dynamic Programming. IEEE Transactions on Image Processing 16(3), 879–884 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Veksler, O.: Extracting Dense Features for Visual Correspondence with Graph Cuts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 689–694 (2003)Google Scholar
  25. 25.
    Gong, M., Yang, Y.H.: Fast Unambiguous Stereo Matching Using Reliability-Based Dynamic Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 998–1003 (2005)CrossRefGoogle Scholar
  26. 26.
    Khaleghi, B., Ahuja, S., Wu, J.Q.M.: A new Miniaturized Embedded Stereo-Vision System (MESVS-I). In: Proceedings of Canadian Conference on Computer and Robot Vision, pp. 26–33 (2008)Google Scholar
  27. 27.
    Woodill, J.I., Buck, R., Jurasek, D., Gordon, G., Brown, T.: 3D Vision: Developing an Embedded Stereo-Vision System. IEEE Computer 40(5), 106–108 (2007)CrossRefGoogle Scholar
  28. 28.
    Miyajima, Y., Maruyama, T.: A Real-Time Stereo Vision System with FPGA. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 448–457. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Ambrosch, K., Humenberger, M., Kubinger, W., Steininger, A.: SAD-based Stereo Matching Using FPGAs. In: Embedded Computer Vision part II, pp. 121–138. Springer, London (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christos Georgoulas
    • 1
  • Ioannis Andreadis
    • 1
  1. 1.Laboratory of Electronics Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations