Advertisement

A Robust Iris Localization Model Based on Phase Congruency and Least Trimmed Squares Estimation

  • Lili Pan
  • Mei Xie
  • Tao Zheng
  • Jianli Ren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Iris localization is a crucial step in iris recognition. The previous proposed algorithms perform unsatisfactorily due to the disturbing of eyelash and variation of image brightness. To solve these problems, we proposed a robust iris position estimation algorithm based on phase congruency analysis and LTSE (Least Trimmed Squares Estimation). Through using the robust regression method to fit iris edge points we can solve the eyelash occlusion problem at a certain extent. The experimental results demonstrate the validity of this algorithm.

Keywords

Iris Segmentation Phase Congruency Least Trimmed Squares Estimation 

References

  1. 1.
    Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K.: Biometric recognition: Q&A. Nature 449(6), 38–40 (2007)CrossRefGoogle Scholar
  3. 3.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image Understanding for Iris Biometrics: A Survey. Computer Vision and Image Understanding, 1–37 (2007)Google Scholar
  4. 4.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Machine Intell. 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  5. 5.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceeding of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  6. 6.
    Zuo, J., Ratha, N.K., Connell, J.H.: A New Approach for Iris Segmentation. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop on Biometrics, pp. 1–6 (2008)Google Scholar
  7. 7.
    Nabti, M., Bouridane, A.: An Efficient and Fast Iris Recognition System based on a Combined Multiscale Feature Extraction technique. Pattern Recognition 41(3), 868–879 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ren, X., Peng, Z., Zeng, Q., et al.: An Improved Method for Daugman’s Iris Localization Algorithm. Computers in Biology and Medicine 38(1), 111–115 (2008)CrossRefGoogle Scholar
  9. 9.
    Basit, A., Javed, M.Y.: Localization of Iris in Gray Scale Images Using Intensity Gradient. Optics and Lasers in Engineering 45(12), 1107–1114 (2007)CrossRefGoogle Scholar
  10. 10.
    He, X., Shi, P.: A New Segmentation Approach for Iris Recognition based on Hand-held Capture Device. Pattern Recognition 40(4), 1326–1333 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pundlik, S.J., Woodard, D.L., Birchfield, S.T.: Non-Ideal Iris Segmentation Using Graph Cuts. In: Pr2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop on Biometrics, pp. 23–28 (2008)Google Scholar
  12. 12.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Towards Accurate and Fast Iris Segmentation for Iris Biometrics. To be appeared in IEEE Trans. Pattern Anal. Machine Intell. (2008)Google Scholar
  13. 13.
    Miyazawa, K., Ito, K., Aoki, T.: An Effective Approach for Iris Recognition Using Phase-Based Image Matching. IEEE Trans. Pattern Anal. Machine Intell. 30(10), 1741–1756 (2008)CrossRefGoogle Scholar
  14. 14.
    Pan, L., Xie, M.: The Algorithm of Iris Image Preprocessing. In: Proceedings of the Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 134–138 (2005)Google Scholar
  15. 15.
    Kovesi, P.: Image features from phase congruency. Videre: A Journal of Computer Vision Research 1(3), 1–27 (1999)Google Scholar
  16. 16.
    Schenk, V.U.B., Brady, M.: Improving Phase-Congruency Based Feature Detection through Automatic Scale-Selection. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 121–128. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Suter, D.: LTSD: A Highly Efficient Symmetry-Based Robust Estimator. In: Proceeding of the Seventh International Conference on Control, Antomation, Robatlu and Vision, Singapore, pp. 332–337 (2002)Google Scholar
  18. 18.
    Bai, E.: Outliers: Inliers and the Squares Estimator in Generalized Least Trimmed System Identification. Journal of Control Theory and Application 1, 17–27 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct Least Square Fitting of Ellipse. IEEE Trans. Pattern Anal. Machine Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  20. 20.
    Soille, P.: Morphological Image Analysis: Principles and Applications, pp. 173–174. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Froba, B., Emst, A., Kubleck, C.: Real-Time Face Detection Using Edge-Orientation Matching. In: The Third International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 78–83 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lili Pan
    • 1
  • Mei Xie
    • 1
  • Tao Zheng
    • 1
  • Jianli Ren
    • 1
  1. 1.School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations