Advertisement

3D Neural Model-Based Stopped Object Detection

  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

In this paper we propose a system that is able to distinguish moving and stopped objects in digital image sequences taken from stationary cameras. Our approach is based on self organization through artificial neural networks to construct a model of the scene background and a model of the scene foreground that can handle scenes containing moving backgrounds or gradual illumination variations, helping in distinguishing between moving and stopped foreground regions, leading to an initial segmentation of scene objects. Experimental results are presented for video sequences that represent typical situations critical for detecting vehicles stopped in no parking areas and compared with those obtained by other existing approaches.

Keywords

moving object detection background subtraction background modeling foreground modeling stopped object self organization neural network 

References

  1. 1.
    Boragno, S., Boghossian, B., Black, J., Makris, D., Velastin, S.: A DSP-based system for the detection of vehicles parked in prohibited areas. In: [20]Google Scholar
  2. 2.
    Cantoni, V., Marinaro, M., Petrosino, A. (eds.): Visual Attention Mechanisms. Kluwer Academic/Plenum Publishers, New York (2002)Google Scholar
  3. 3.
    Cheung, S.-C., Kamath, C.: Robust Techniques for Background Subtraction in Urban Traffic Video. In: Proceedings of EI-VCIP, pp. 881–892 (2004)Google Scholar
  4. 4.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A System for Video Surveillance and Monitoring. The Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-00-12 (2000)Google Scholar
  5. 5.
    Ding, J., Ma, R., Chen, S.: A Scale-Based Connected Coherence Tree Algorithm for Image Segmentation. IEEE Transactions on Image Processing 17(2), 204–216 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art. Recent Patents on Computer Science 1, 32–54 (2008)CrossRefGoogle Scholar
  7. 7.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
  8. 8.
    Ferryman, J.M. (ed.): Proceedings of the 9th IEEE International Workshop on PETS, New York, June 18 (2006)Google Scholar
  9. 9.
    Ferryman, J.M. (ed.): Proceedings of the 10th IEEE International Workshop on PETS, Rio de Janeiro, Brazil, October 14 (2007)Google Scholar
  10. 10.
    Fisher, R.B.: Change Detection in Color Images, http://homepages.inf.ed.ac.uk/rbf/PAPERS/iccv99.pdf
  11. 11.
    Guler, S., Silverstein, J.A., Pushee, I.H.: Stationary objects in multiple object tracking. In: [20]Google Scholar
  12. 12.
    Herrero-Jaraba, E., Orrite-Urunuela, C., Senar, J.: Detected Motion Classification with a Double-Background and a Neighborhood-based Difference. Pattern Recognition Letters 24, 2079–2092 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-time Foreground-Background Segmentation using Codebook Model. Real-Time Imaging 11, 172–185 (2005)CrossRefGoogle Scholar
  14. 14.
    Lee, J.T., Ryoo, M.S., Riley, M., Aggarwal, J.K.: Real-time detection of illegally parked vehicles using 1-D transformation. In: [20]Google Scholar
  15. 15.
    Maddalena, L., Petrosino, A.: A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications. IEEE Transactions on Image Processing 17(7), 1168–1177 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maddalena, L., Petrosino, A., Ferone, A.: Object Motion Detection and Tracking by an Artificial Intelligence Approach. International Journal of Pattern Recognition and Artificial Intelligence 22(5), 915–928 (2008)CrossRefGoogle Scholar
  17. 17.
    Patwardhan, K.A., Sapiro, G., Morellas, V.: Robust Foreground Detection in Video Using Pixel Layers. IEEE Transactions on PAMI 30(4), 746–751 (2008)CrossRefGoogle Scholar
  18. 18.
    Piccardi, M.: Background Subtraction Techniques: A Review. In: Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 3099–3104 (2004)Google Scholar
  19. 19.
    Porikli, F., Ivanov, Y., Haga, T.: Robust Abandoned Object Detection Using Dual Foregrounds. EURASIP Journal on Advances in Signal Processing (2008)Google Scholar
  20. 20.
    Proceedings of 2007 IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS 2007). IEEE Computer Society (2007)Google Scholar
  21. 21.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image Change Detection Algorithms: A Systematic Survey. IEEE Transactions on Image Processing 14(3), 294–307 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proceedings of the Seventh IEEE Conference on Computer Vision, vol. 1, pp. 255–261 (1999)Google Scholar
  23. 23.
    Venetianer, P.L., Zhang, Z., Yin, W., Lipton, A.J.: Stationary target detection using the objectvideo surveillance system. In: [20]Google Scholar
  24. 24.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-Time Tracking of the Human Body. IEEE Transactions on PAMI 19(7), 780–785 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lucia Maddalena
    • 1
  • Alfredo Petrosino
    • 2
  1. 1.ICAR - National Research CouncilNaplesItaly
  2. 2.DSA - University of Naples ParthenopeNaplesItaly

Personalised recommendations