Analysis and Classification of Crithidia Luciliae Fluorescent Images

  • Paolo Soda
  • Leonardo Onofri
  • Amelia Rigon
  • Giulio Iannello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


Autoantibody tests based on Crithidia Luciliae (CL) substrate are the recommended method to detect Systemic Lupus Erythematosus (SLE), a very serious sickness further to be classified as an invalidating chronic disease. CL is an unicellular organism containing a strongly tangled mass of circular dsDNA, named as kinetoplast, whose fluorescence determines the positiveness to the test. Conversely, the staining of other parts of cell body is not a disease marker, thus representing false positive fluorescence. Such readings are subjected to several issues limiting the reproducibility and reliability of the method, as the photo-bleaching effect and the inter-observer variability. Hence, Computer-Aided Diagnosis (CAD) tools can support physicians decision. In this paper we propose a system to classify CL wells based on a three stages recognition approach, which classify single cell, images and, finally, the well. The fusion of such different information permits to reduce the misclassifications effect. The approach has been successfully tested on an annotated dataset, proving its feasibility.


Systemic Lupus Erythematosus Support Vector Machine Local Binary Pattern Confusion Matrix Zernike Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee, P.P.W., Lee, T.L., Ho, M.H.K., Wong, W.H.S., Lau, Y.L.: Recurrent major infections in juvenile-onset systemic lupus erythematosus–a close link with long-term disease damage. Rheumatology 46, 1290–1296 (2007)CrossRefGoogle Scholar
  2. 2.
    Mok, C.C., Lee, K.W., Ho, C.T.K., et al.: A prospective study of survival and prognostic indicators of systemic lupus erythematosus in a southern chinese population. Rheumatology 39, 399–406 (2000)CrossRefGoogle Scholar
  3. 3.
    Hochberg, M.C.: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism 40(9), 1725 (1997)CrossRefGoogle Scholar
  4. 4.
    Piazza, A., Manoni, F., Ghirardello, A., Bassetti, D., Villalta, D., Pradella, M., Rizzotti, P.: Variability between methods to determine ANA, anti-dsDNA and anti-ENA autoantibodies: a collaborative study with the biomedical industry. Journal of Immunological methods 219, 99–107 (1998)CrossRefGoogle Scholar
  5. 5.
    Tozzoli, R., Bizzaro, N., Tonutti, E., Villalta, D., Bassetti, D., Manoni, F., Piazza, A., Pradella, M., Rizzotti, P.: Guidelines for the laboratory use of autoantibody tests in the diagnosis and monitoring of autoimmune rheumatic diseases. American Journal of Clinical Pathology 117(2), 316–324 (2002)CrossRefGoogle Scholar
  6. 6.
    Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophysical Journal 68(6), 2588–2600 (1995)CrossRefGoogle Scholar
  7. 7.
    Rigon, A., Soda, P., Zennaro, D., Iannello, G., Afeltra, A.: Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytometry 72(6), 472–477 (2007)CrossRefGoogle Scholar
  8. 8.
    Das s.r.l.: Service Manual AP16 IF Plus. Palombara Sabina (RI) (March 2004)Google Scholar
  9. 9.
    Bio-Rad Laboratories Inc.: PhD System (2004),
  10. 10.
    Perner, P., Perner, H., Muller, B.: Mining knowledge for HEp-2 cell image classification. Artificial Intelligence in Medicine 26(1-2), 161–173 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sack, U., Knoechner, S., Warschkau, H., Pigla, U., Emmerich, F., Kamprad, M.: Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmunity Reviews 2(5), 298–304 (2003)CrossRefGoogle Scholar
  12. 12.
    Hiemann, R., Hilger, N., Michel, J., Anderer, U., Weigert, M., Sack, U.: Principles, methods and algorithms for automatic analysis of immunofluorescence patterns on HEp-2 cells. Autoimmunity Reviews, 86 (2006)Google Scholar
  13. 13.
    Soda, P., Iannello, G., Vento, M.: A multiple experts system for classifying fluorescence intensity in antinuclear autoantibodies analysis. Pattern Analysis & Applications (2008)Google Scholar
  14. 14.
    Soda, P., Iannello, G.: Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE Transactions on Information Technology in Biomedicine 13(3), 322–329 (2009)CrossRefGoogle Scholar
  15. 15.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1970)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Onofri, L., Soda, P.: Feature extraction and selection for Chritidia Luciliae discrimination. Technical report, Università Campus Bio-Medico di Roma (December 2008)Google Scholar
  18. 18.
    Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. HP Laboratories (2004)Google Scholar
  19. 19.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, Heidelberg (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paolo Soda
    • 1
  • Leonardo Onofri
    • 1
  • Amelia Rigon
    • 2
  • Giulio Iannello
    • 1
  1. 1.Integrated Research Centre, Medical Informatics & Computer Science LaboratoryUniversity Campus Bio-Medico of RomeRomeItaly
  2. 2.Integrated Research Centre, ImmunologyUniversity Campus Bio-Medico of RomeRomeItaly

Personalised recommendations