Object Matching in Distributed Video Surveillance Systems by LDA-Based Appearance Descriptors

  • Liliana Lo Presti
  • Stan Sclaroff
  • Marco La Cascia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.

References

  1. 1.
    Khan, S., Shah, M.: Consistent Labeling of Tracked Objects in Multiple Cameras with Overlapping Fields of View. IEEE PAMI 25, 1355–1360 (2003)CrossRefGoogle Scholar
  2. 2.
    Calderara, S., Prati, A., Cucchiara, R.: HECOL: Homography and epipolar-based consistent labeling for outdoor park surveillance. Computer Vision and Image Understanding Special Issue on Intelligent Visual Surveillance, 21–42 (2008)Google Scholar
  3. 3.
    Madden, C., Cheng, E.D., Piccardi, M.: Tracking people across disjoint camera views by an illumination-tolerant appearance representation. Mach. Vision Appl. 18(3), 233–247 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Teixeira, L.F., Corte-Real, L.: Video object matching across multiple independent views using local descriptors and adaptive learning. Pattern Recogn. Lett. 30(2), 157–167 (2009)CrossRefGoogle Scholar
  5. 5.
    Tieu, K., Dalley, G., Grimson, W.E.L.: Inference of non-overlapping camera network topology by measuring statistical dependence. In: IEEE Proc. of ICCV 2005, vol. 2, pp. 17–21 (2005)Google Scholar
  6. 6.
    Makris, D., Ellis, T., Black, J.: Bridging the gaps between cameras. In: IEEE Proc. of CVPR, vol. 2, pp. 205–210 (2004)Google Scholar
  7. 7.
    Calderara, S., Cucchiara, R., Prati, A.: Multimedia surveillance: content-based retrieval with multicamera people tracking. In: Proc. of the 4th ACM international workshop on Video surveillance and sensor networks, pp. 95–100 (2006)Google Scholar
  8. 8.
    Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across multiple cameras with disjoint views. In: Proc. of ICCV 2003, vol. 2, pp. 952–957 (2003)Google Scholar
  9. 9.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Res. 3, 993–1022 (2003)MATHGoogle Scholar
  10. 10.
    Griffiths, T., Steyvers, M.: Finding scientific topics. Proc. of the National Academy of Sciences 101, 5228–5235 (2004)CrossRefGoogle Scholar
  11. 11.
    Griffiths, T., Steyvers, M.: Probabilistic Topic Models. In: Landauer, T., McNamara, D., Dennis, S., Kintsch, W. (eds.) LSA: A Road to MeaningGoogle Scholar
  12. 12.
    Russell, B.C., Freeman, W.T., Efros, A.A., Sivic, J., Zisserman, A.: Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. In: IEEE Proc. of CVPR 2006, vol. 2, pp. 1605–1614 (2006)Google Scholar
  13. 13.
    Wang, X., Tieu, K., Grimson, E.L.: Correspondence-Free Activity Analysis and Scene Modeling in Multiple Camera Views. In: IEEE PAMI (accepted, 2009)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liliana Lo Presti
    • 1
  • Stan Sclaroff
    • 2
  • Marco La Cascia
    • 1
  1. 1.Dipartimento di Ingegneria InformaticaUniversity of PalermoItaly
  2. 2.Computer Science DepartmentBoston UniversityUSA

Personalised recommendations