Probabilistic Corner Detection for Facial Feature Extraction

  • Edoardo Ardizzone
  • Marco La Cascia
  • Marco Morana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


After more than 35 years of resarch, face processing is considered nowadays as one of the most important application of image analysis. It can be considered as a collection of problems (i.e., face detection, normalization, recognition and so on) each of which can be treated separately. Some face detection and face recognition techniques have reached a certain level of maturity, however facial feature extraction still represents the bottleneck of the entire process. In this paper we present a novel facial feature extraction approach that could be used for normalizing Viola-Jones detected faces and let them be recognized by an appearance-based face recognition method. For each observed feature a prior distribution is computed and used as boost map to filter the Harris corner detector response producing more feature candidates on interest region while discarding external values. Tests have been performed on both AR and BioID database using approximately 1750 faces and experimental results are very encouraging.


Face detection face recognition features extraction CBIR 


  1. 1.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. 1:I–511–I–518 (2001)Google Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar
  4. 4.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recogn. 25(1), 65–77 (1992)CrossRefGoogle Scholar
  5. 5.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Yuille, A.L., Cohen, D.S., Hallinan, P.W.: Feature extraction from faces using deformable templates. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR 1989, June 1989, pp. 104–109 (1989)Google Scholar
  8. 8.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Berg, T.L., Berg, A.C., Edwards, J., Maire, M., White, R.: Names and faces in the news. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–848–II–854 (2004)Google Scholar
  12. 12.
    Berg, A.C., Malik, J.: Geometric blur for template matching. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. 1:I–607–I–614 (2001)Google Scholar
  13. 13.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of The Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  14. 14.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Derpanis, K.G.: The harris corner detector (2004)Google Scholar
  16. 16.
    Duchon, J.: Spline minimizing rotation-invariant semi-norms on sobolev spaces. Lecture Notes in Math., vol. 571, pp. 85–100 (1977)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Edoardo Ardizzone
    • 1
  • Marco La Cascia
    • 1
  • Marco Morana
    • 1
  1. 1.DINFO - Dipartimento di Ingegneria InformaticaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations