Encephalic NMR Tumor Diversification by Textural Interpretation

  • Danilo Avola
  • Luigi Cinque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


The novel technologies used in different application domains allow to obtain digital images with a high complex informative content. These meaningful information are expressed by textural skin that covers the objects represented inside the images. The textural information can be exploited to interpret the semantic meaning of the images themselves. This paper provides a mathematical characterization, based on texture analysis, of the craniopharyngioma pathology distinguishing it from other kinds of primary cerebral tumors. By this characterization a prototype has been developed, which has primarily allowed to identify potential abnormal masses inside the cerebral tissue and subsequently to possibly classify them as craniopharyngiomas.


Medical image texture analysis pattern recognition feature extraction segmentation classification co-occurrence matrix 


  1. 1.
    Avola, D., Cinque, L.: Encephalic NMR Image Analysis by Textural Interpretation. In: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC 2008, pp. 1338–1342. ACM Press, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Bazin, P.L., Pham, D.L.: Topology Correction of Segmented Medical Images Using a Fast Marching Algorithm. Comput. Methods Prog. Biomed. 88(2), 182–190 (2007)CrossRefGoogle Scholar
  3. 3.
    Zhou, Y., Bai, J.: Atlas-Based Fuzzy Connectedness Segmentation and Intensity Nonuniformity Correction Applied to Brain MRI. IEEE Transactions on Biomedical Engineering 54(1), 122–129 (2007)CrossRefGoogle Scholar
  4. 4.
    McIntosh, C., Hamarneh, G.: Genetic Algorithm Driven Statistically Deformed Models for Medical Image Segmentation. In: ACM Workshop on Medical Applications of Genetic and Evolutionary Computation Workshop, MedGEC 2006, p. 8. ACM Press, New York (2006)Google Scholar
  5. 5.
    Yan, P., Kassim, A.A.: Medical Image Segmentation Using Minimal Path Deformable Models with Implicit Shape Priors. IEEE Transactions on Information Technology in Biomedicine 10(4), 677–684 (2006)CrossRefGoogle Scholar
  6. 6.
    Zwiggelaar, R., Blot, L., Raba, D., Denton, E.R.E.: Set-Permutation-Occurrence Matrix Based Texture Segmentation. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1099–1107. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Teke, A., Atalay, V.: Texture Classification and Retrieval Using the Random Neural Network Model. Journal on Computational Management Science 3(3), 193–205 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jimenez-Alaniz, J.R., Medina-Banuelos, V., Yanez-Suarez, O.: Data-Driven Brain MRI Segmentation Supported on Edge Confidence. IEEE Trans. Med. Imaging 25(1), 74–83 (2006)CrossRefGoogle Scholar
  9. 9.
    Julesz, B.: Dialogues on Perception. Bradford/MIT Press, Cambridge (1995)Google Scholar
  10. 10.
    Heeger, D.J., Bergen, J.R.: Pyramid-Based Texture Analysis/Synthesis. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 229–238. ACM Press, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Danilo Avola
    • 1
  • Luigi Cinque
    • 1
  1. 1.Department of Computer ScienceUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations