Theia: Multispectral Image Analysis and Archaeological Survey

  • Vito Roberto
  • Massimiliano Hofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Theia is a software framework for multispectral image analysis. The design is grounded on the object-oriented approach and a model combining parallel computation with selective data processing. Multispectral images from the archaeological site of Aquileia, Italy, have been used as the experimental testbed in order to assess the effectiveness and performance of the system; satisfactory results are reported, and are quite promising towards the use of the framework as a dynamic, interactive interface to real-time data exploration and processing.

Keywords

Multispectral Hyperspectral Image Processing Interactive Visualization Object Oriented Design Cultural Heritage Archaeological survey Remote sensing 

References

  1. 1.
  2. 2.
    ENVI ITT Visual Information Solutions, http://www.ittvis.com/envi/index.asp
  3. 3.
    ISIS US Geological Survey, http://isis.astrogeology.usgs.gov/
  4. 4.
    Opticks Ball Aerospace & Technologies Corp., https://opticks.ballforge.net/
  5. 5.
    NEST Array Systems Computing Inc. under ESA Contract, http://www.array.ca/nest/
  6. 6.
  7. 7.
    Adobe Developers Association, TIFF Revision 6.0. (1992), http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf
  8. 8.
    Perrizo, W., Ding, Q., Ding, Q., Roy, A.: On mining satellite and other remotely sensed images. In: Proceedings of ACM SIGMOD Worksh. on Research Issues in Data Mining and Knowledge Discovery, pp. 33–40 (2001)Google Scholar
  9. 9.
    Landgrebe, D.: Some fundamentals and methods for hyperspectral image data analysis. In: Systems and Technologies for Clinical Diagnostics and Drug Discovery II. School of Electrical & Computer Engineering Purdue University, vol. 3603. SPIE (1999)Google Scholar
  10. 10.
    El-Ghazawi, T., Kaewpijit, S., Le Moigne, J.: Parallel and Adaptive Reduction of Hyperspectral Data to Intrinsic Dimensionality. In: Proceedings of the IEEE International Conference on Cluster Computing. The IEEE Computer Society, Los Alamitos (2001)Google Scholar
  11. 11.
    Sweet, J.: The spectral similarity scale and its application to the classification of hyperspectral remote sensing data. In: IEEE Worksh. on Advances in Techniques for Analysis of Remotely Sensed Data, pp. 92–99 (2003)Google Scholar
  12. 12.
    Eriksson, H.E., Penker, M., Lyons, B., Fado, D.: UML2TM Toolkit. Wiley Publishing, Inc., Chichester (2004)Google Scholar
  13. 13.
    Frew, J.: Difficulties of dealing with large image cubes. In: Proceedings of AIAA Aerospace Sciences Meeting (1991)Google Scholar
  14. 14.
    Boutell, T., et al.: PNG (Portable Network Graphics) Specification Version 1.0. RFC 2083 (1997)Google Scholar
  15. 15.
    OpenGIS® Web Map Service (WMS) Implementation Specification. v. 1.3.0 Open Geospatial Consortium Inc. (2006)Google Scholar
  16. 16.
    Vagni, F.: Survey of hyperspectral and multispectral imaging technologies. Technical Report TR-SET-065-P3 NATO Research and Technology Organization (2007)Google Scholar
  17. 17.
    Boccardo, P., Mondino, E.B., Gomarasca, M.A., Perotti, L.: Orthoprojection tests of hyperspectral data in steep slope zones. In: ISPRS 2004, p. 872 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vito Roberto
    • 1
    • 2
  • Massimiliano Hofer
    • 1
  1. 1.Dipartimento di Matematica e InformaticaItaly
  2. 2.Norbert Wiener CenterUniversity of UdineItaly

Personalised recommendations