Quality Assessment of the MPEG-4 Scalable Video CODEC

  • Florian Niedermeier
  • Michael Niedermeier
  • Harald Kosch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


In this paper, the performance of the emerging MPEG-4 SVC CODEC is evaluated. In the first part, a brief introduction on the subject of quality assessment and the development of the MPEG-4 SVC CODEC is given. After that, the used test methodologies are described in detail, followed by an explanation of the actual test scenarios. The main part of this work concentrates on the performance analysis of the MPEG-4 SVC CODEC - both objective and subjective. Please note that this document is only a shortened version of the assessment. Further experimental results can be found in the extended version available at the Computing Research Repository (CoRR).


Visual Quality Scalable Video Code Scalable Video Fast Mode Decision Coarse Grain Scalability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bach, M.: Freiburg Visual Acuity, Contrast & Vernier Test (’FrACT’) (2002),
  2. 2.
    CS MSU Graphics & Media Lab Video Group. MOS Codecs Comparison (January 2006)Google Scholar
  3. 3.
    CS MSU Graphics & Media Lab Video Group. Video MPEG-4 AVC/H.264 Codecs Comparison (December 2007)Google Scholar
  4. 4.
    Rohaly, A.M., et al.: Video quality experts group: current results and future directions. In: Ngan, K.N., Sikora, T., Sun, M.-T. (eds.) Visual Communications and Image Processing 2000. Proceedings of SPIE, vol. 4067, pp. 742–753. SPIE (2000)Google Scholar
  5. 5.
    Barzilay, M.A.J., et al.: Subjective quality analysis of bit rate exchange between temporal and SNR scalability in the MPEG4 SVC extension. In: International Conference on Image Processing, pp. II: 285–288 (2007)Google Scholar
  6. 6.
    Feghali, R., Wang, D., Speranza, F., Vincent, A.: Quality metric for video sequences with temporal scalability. In: International Conference on Image Processing, pp. III: 137–140 (2005)Google Scholar
  7. 7.
    I.O. for Standardisation. Svc verification test report. iso/iec jtc 1/sc 29/wg 11 n9577 (2007)Google Scholar
  8. 8.
    Institut für Rundfunktechnik. ITU-R BT.500 Recommendation and SAMVIQ, ITU-R BT.700 (2005)Google Scholar
  9. 9.
    Rabin, J.: (Visual Function Laboratory Ophthalmology Branch / USAF School of Aerospace Medicine). Color vision fundamentals (1998)Google Scholar
  10. 10.
    Kozamernik, F., Steinman, V., Sunna, P., Wyckens, E.: SAMVIQ - A New EBU Methodology for Video Quality Evaluations in Multimedia, Amsterdam (2004)Google Scholar
  11. 11.
    Li, H., Li, Z.G., Wen, C.: Fast mode decision algorithm for inter-frame coding in fully scalable video coding. IEEE Trans. Circuits and Systems for Video Technology 16(7), 889–895 (2006)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Wien, M., Schwarz, H., Oelbaum, T.: Performance analysis of SVC. IEEE Trans. Circuits and Systems for Video Technology 17(9), 1194–1203 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Niedermeier
    • 1
  • Michael Niedermeier
    • 1
  • Harald Kosch
    • 1
  1. 1.Department of Distributed Information SystemsUniversity of Passau (UoP)PassauGermany

Personalised recommendations