Advertisement

Tree Covering within a Graph Kernel Framework for Shape Classification

  • François-Xavier Dupé
  • Luc Brun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

Shape classification using graphs and skeletons usually involves edition processes in order to reduce the influence of structural noise. On the other hand, graph kernels provide a rich framework in which many classification algorithm may be applied on graphs. However, edit distances cannot be readily used within the kernel machine framework as they generally lead to indefinite kernels. In this paper, we propose a graph kernel based on bags of paths and edit operations which remains positive definite according to the bags. The robustness of this kernel is based on a selection of the paths according to their relevance in the graph. Several experiments prove the efficiency of this approach compared to alternative kernel.

Keywords

Shape Skeleton Graph Kernel Kernel Machines 

References

  1. 1.
    Pope, A.R.: Model-based object recognition: A survey of recent research. Technical Report TR-94-04, University of British Columbia (1994)Google Scholar
  2. 2.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-jacobi skeletons. International Journal of Computer Vision 48(3), 215–231 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Goh, W.B.: Strategies for shape matching using skeletons. Computer Vision and Image Understanding 110, 326–345 (2008)CrossRefGoogle Scholar
  4. 4.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  5. 5.
    Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. on PAMI 21(11), 1105–1120 (1999)CrossRefGoogle Scholar
  6. 6.
    Vishwanathan, S., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels. Journal of Machine Learning Research 9, 1–37 (2008)zbMATHGoogle Scholar
  7. 7.
    Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39, 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measuring similarity of shapes. In: Proceedings of ESANN 2007, 15th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 25-27, 2007, pp. 355–360 (2007)Google Scholar
  10. 10.
    Dupé, F.X., Brun, L.: Hierarchical bag of paths for kernel based shape classification. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 227–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Dupé, F.X., Brun, L.: Edition within a graph kernel framework for shape recognition. In: Torsello, A., Escolano, F., Brun, L. (eds.) GBR, pp. 11–20. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    DiMatteo, I., Genovese, C., Kass, R.: Bayesian curve fitting with free-knot splines. Biometrika 88, 1055–1071 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Meyer, F.: Topographic distance and watershed lines. Signal Proc. 38(1) (1994)Google Scholar
  14. 14.
    Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95, 1–29 (2004)zbMATHGoogle Scholar
  15. 15.
    Suard, F., Rakotomamonjy, A., Bensrhair, A.: Mining shock graphs with kernels. Technical report, LITIS (2006), http://hal.archives-ouvertes.fr/hal-00121988/en/
  16. 16.
    Guo, J., Niedermeier, R., Uhlmann, J.: Two fixed-parameter algorithms for vertex covering by paths on trees. Information Processing Letters 106, 81–86 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California at Santa Cruz (1999)Google Scholar
  18. 18.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs. In: Proc. of the Twentieth International conference on machine Learning, pp. 321–328 (2003)Google Scholar
  19. 19.
  20. 20.
    Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recognition 40, 863–874 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François-Xavier Dupé
    • 1
  • Luc Brun
    • 1
  1. 1.GREYC UMR CNRS 6072ENSICAEN-Université de Caen Basse-NormandieCaenFrance

Personalised recommendations