Advertisement

Reconstructing 3D Facial Shape Using Spherical Harmonics

  • Chengming Zou
  • Guanghui Zhao
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)

Abstract

It is now well established that 3D facial shape can be effectively and conveniently reconstructed using spherical harmonics. This paper extends the state-of-the-art by showing how to recover a 3D facial shape reconstruction using a spherical parameterization and minimizing a Harmonic Energy based on spherical medians. The solution is formulated as a linear system and we propose an iterative residual fitting algorithm (LSQR-IRF) to solve it. We demonstrate the effectivenss of the method on range-data.

Keywords

Spherical Harmonics Reconstruction 3D Facial Shape 

References

  1. 1.
    Smith, W.A.P., Hancock, E.R.: Facial Shape-from-shading and Recognition Using Principal Geodesic Analysis and Robust Statistics. Int. Journal Computer Vision 76, 71–91 (2008)CrossRefGoogle Scholar
  2. 2.
    Wu, J., Smith, W.A.P., Hancock, E.R.: Weighted principal geodesic analysis for facial gender classification. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 331–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bronstein, A., Bronstein, M., Kimmel, R.: Expression invariant face recognition via spherical embedding. In: Image Processing, ICIP, vol. 3, pp. 756–759 (2005)Google Scholar
  4. 4.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical harmonic representation of 3D shape descriptors. Proceedings of the 2003 Eurographics 43, 126–164 (2003)Google Scholar
  5. 5.
    Chung, M.K., Dalton, K.M., Shen, L., et al.: Weighted Fourier Series Representation and Its Application to Quantifying the Amount of Gray Matter. IEEE Transactions on Medecal Imaging 26(4), 566–581 (2007)CrossRefGoogle Scholar
  6. 6.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  7. 7.
    Shen, L., Chung, M.K.: Large-Scale Modeling of Parametric Surfaces using Spherical harmonics. In: Third International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2006)Google Scholar
  8. 8.
    Fletcher, P.T., Lu, C., Pizer, S.M., et al.: Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape. IEEE Transactions on Medical Imageing 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  9. 9.
    Gu, X., Yau, S.-T.: Computing Conformal Structures of Surfaces. Communications in Information and Systems 2(2), 121–146 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eck, M., DeRose, T., Duchamp, T., et al.: Multiresolution Analysis of Arbitrary Meshes. In: Proceedings of SIGGRAPH 1995, pp. 173–182 (1995)Google Scholar
  11. 11.
    Ye, Q., Shen, Y.: Practical Handbook of Mathematics, 2nd edn. Science Press, China (2006)Google Scholar
  12. 12.
    Paige, C.C., Saunders, M.A.: LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software 8(1), 43–71 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chengming Zou
    • 1
    • 2
  • Guanghui Zhao
    • 1
  • Edwin R. Hancock
    • 2
  1. 1.School of Computer ScienceWuhan University of TechnologyWuhanChina
  2. 2.Department of Computer ScienceThe University of YorkYorkUK

Personalised recommendations