Skip to main content

Complete Parsimony Haplotype Inference Problem and Algorithms

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

Abstract

Haplotype inference by pure parsimony (HIPP) is a well-known paradigm for haplotype inference. In order to assess the biological significance of this paradigm, we generalize the problem of HIPP to the problem of finding all optimal solutions, which we call complete HIPP. We study intrinsic haplotype features, such as backbone haplotypes and fat genotypes as well as equal columns and decomposability. We explicitly exploit these features in three computational approaches which are based on integer linear programming, depth-first branch-and-bound, and a hybrid algorithm that draws on the diverse strengths of the first two approaches. Our experimental analysis shows that our optimized algorithms are significantly superior to the baseline algorithms, often with orders of magnitude faster running time. Finally, our experiments provide some useful insights to the intrinsic features of this interesting problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrés, A.M., Clark, A.G., Boerwinkle, E., Sing, C.F., Hixson, J.E.: Assessing the accuracy of statistical haplotype inference with sequence data of known phase. Genet. Epi. 31, 659–671 (2007)

    Article  Google Scholar 

  2. Bertolazzi, P., Godi, A., Labbé, M., Tininini, L.: Solving haplotyping inference parsimony problem using a new basic polynomial formulation. Comput. Math. Appl. 55(5), 900–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, D.G., Harrower, I.M.: Integer Programming Approaches to Haplotype Inference by Pure Parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(2), 141–154 (2006)

    Article  Google Scholar 

  4. Clark, A.G.: Inference of Haplotypes from PCR-Amplified Samples of Diploid Populations. Molecular Biology and Evolution 7, 111–122 (1990)

    Google Scholar 

  5. Climer, S., Jäger, G., Templeton, A.R., Zhang, W.: How Frugal is Mother Nature with Haplotypes? Bioinformatics 25(1), 68–74 (2009)

    Article  Google Scholar 

  6. Climer, S., Zhang, W.: Searching for Backbones and Fat: A Limit-Crossing Approach with Applications. In: Proc. 18th National Conference on Artificial Intelligence (AAAI), pp. 707–712 (2002)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  9. Gusfield, D.: Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms. J. Computational Biology 8(3), 305–313 (2001)

    Article  MathSciNet  Google Scholar 

  10. Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Gusfield, D., Orzack, S.H.: Haplotype Inference. In: Handbook on Bioinformatics (2005)

    Google Scholar 

  12. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Lancia, G., Pinotti, C.M., Rizzi, R.: Haplotype Populations by Pure Parsimony: Complexity of Exact and Approximation Algorithms. INFORMS J. Computing 16(4), 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lynce, I., Marques-Silva, J.: Efficient Haplotype Inference with Boolean Satisfiability. In: Proc. 21st National Conference on Artificial Intelligence (AAAI), pp. 104–109 (2006)

    Google Scholar 

  15. Lynce, I., Marques-Silva, J.: SAT in Bioinformatics: Making the Case with Haplotype Inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Lynce, I., Marques-Silva, J., Prestwich, S.: Boosting Haplotype Inference with Local Search. Constraints 13(1-2), 155–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Niedermeier, R.: Invitation to Fixed-Parameter Tractability. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  18. Orzack, S.H., Gusfield, D., Olson, J., Nesbitt, S., Subrahmanyan, L., Stanton Jr., V.P.: Analysis and Exploration of the Use of Rule-Based Algorithms and Consensus Methods for the Inferral of Haplotypes. Genetics 165, 915–928 (2003)

    Google Scholar 

  19. Slaney, J., Walsh, T.: Backbones in Optimization and Approximation. In: Proc. 17th Intern. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 254–259 (2001)

    Google Scholar 

  20. Wang, L., Xu, Y.: Haplotype Inference by Maximum Parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

  21. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Zhang, W.: Configuration Landscape Analysis and Backbone Guided Local Search: Part I: Satisfiability and Maximum Satisfiability. Artificial Intelligence 158(1), 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, W.: Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem. J. Artificial Intelligence Research 20, 471–497 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman Problem that Exploits Backbones. In: Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 343–350 (2005)

    Google Scholar 

  25. Homepage of Cplex, http://www.ilog.com/products/optimization/archive.cfm

  26. The International HapMap Consortium: A Haplotype Map of the Human Genome. Nature 437, 1299–1320 (2005)

    Google Scholar 

  27. Supporting Information to this paper, http://www.cse.wustl.edu/~zhang/publications/supplemental/ChippSup.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jäger, G., Climer, S., Zhang, W. (2009). Complete Parsimony Haplotype Inference Problem and Algorithms. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics