Skip to main content

Abstract

This chapter addresses the efficient computation of accurate sensitivity information in the aerodynamic design process. Mathematically, this sensitivity information is expressed by a derivative of a function that is defined via the numerical model of the aerodynamic system. This function links a number of independent variables to relevant target quantities such as lift, drag, or pitching moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcroft, A., Campin, J.M., Heimbach, P., Hill, C., Marshall, J.: The MITgcm. Online documentation. Massachusetts Institute of Technology, USA (2002)

    Google Scholar 

  2. Aumann, P., Bartelheimer, W., Bleecke, H., Eisfeld, J., Lieser, J., Heinrich, R., Kroll, N., Kuntz, M., Monsen, E., Raddatz, J., Reisch, U., Roll, B.: FLOWer Installation and USER Handbook Release 116. Technical Report MEGAFLOW-1001, DLR (2000)

    Google Scholar 

  3. Baldwin, B., Lomax, H.: Thin-layer approximation and algebraic model for separated turbulent flows. IAAA Paper 1978-0257, AIAA, Reston Va, USA (1978)

    Google Scholar 

  4. Bischof, C., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science & Engineering 3(3), 18–32 (1996)

    Article  Google Scholar 

  5. Bischof, C.H., Bücker, H.M., Lang, B., Rasch, A., Slusanschi, E.: Efficient and accurate derivatives for a software process chain in airfoil shape optimization. Technical Report RWTH-CS-SC-02-06, Institute for Scientific Computing, Aachen University of Technology, Aachen (2002)

    Google Scholar 

  6. Bischof, C.H., Carle, A., Corliss, G.F., Griewank, A., Hovland, P.D.: ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming 1, 11–29 (1992)

    Google Scholar 

  7. Boucke, A.: Kopplungswerkzeuge für aeroelastische Simulationen. PhD thesis, RWTH Aachen (2003)

    Google Scholar 

  8. Bücker, H.M., Lang, B., Rasch, A., Bischof, C.H.: Computation of sensitivity information for aircraft design by automatic differentiation. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 1069–1076. Springer, Heidelberg (2002)

    Google Scholar 

  9. Carle, A., Green, L., Bischof, C.H., Newman, P.: Applications of automatic differentiation in CFD. In: Proceedings of the 25th AIAA Fluid Dynamics Conference, AIAA Paper 94-2197, American Institute of Aeronautics and Astronautics (1994)

    Google Scholar 

  10. Christianson, B.: Reverse accumulation and attractive fixed points. Optimization Methods and Software 3, 311–326 (1994)

    Article  Google Scholar 

  11. Christianson, B.: Reverse accumulation and implicit functions. Optimization Methods and Software 9(4), 307–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Collis, S.S., Ghayour, K., Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Towards Adjoint-Based Methods for Aeroacoustic Control. IAAA Paper 2001-0821, AIAA, Reston Va, USA (2001)

    Google Scholar 

  13. Cusdin, P., Müller, J.-D.: Improving the performance of code generated by automatic differentiation. Technical Report QUB-SAE-03-04, QUB School of Aeronautical Engineering (2003)

    Google Scholar 

  14. Dwight, R., et al.: Development of Adjoint Methods for Hybrid RANS Solver TAU. In: Kroll, N., et al. (eds.) MEGADESIGN and MegaOpt. NNFM, vol. 107. Springer, Heidelberg (2008)

    Google Scholar 

  15. Eisfeld, B.: Turbulence Models in FLOWer. In: Kroll, N., Fassbender, J.K. (eds.) MEGAFLOW- Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 63–77. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Forth, S.A., Evans, T.P.: Aerofoil Optimisation via AD of a Multigrid Cell-Vertex Euler Flow Solver. In: Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U. (eds.) Automatic Differentiation: From Simulation to Optimization. Computer and Information Science, pp. 153–160. Springer, New York (2001)

    Google Scholar 

  17. Gauger, N.R.: Das Adjungiertenverfahren in der aerodynamischen Formoptimierung. PhD thesis, TU Braunschweig (2004)

    Google Scholar 

  18. Gerhold, T.: Overview of the hybrid rans code tau. In: Kroll, N., Fassbender, J.K. (eds.) MEGAFLOW- Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 81–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Giering, R., Kaminski, T.: Recipes for Adjoint Code Construction. ACM Trans. Math. Software 24, 437–474 (1998)

    Article  MATH  Google Scholar 

  20. Giering, R., Kaminski, T.: Using TAMC to generate efficient adjoint code: Comparison of automatically generated code for evaluation of first and second order derivatives to hand written code from the minpack-2 collection. In: Faure, C. (ed.) Automatic Differentiation for Adjoint Code Generation, INRIA, Sophia Antipolis, France, pp. 31–37 (1998)

    Google Scholar 

  21. Giering, R., Kaminski, T.: Recomputations in reverse mode AD. In: Corliss, G., Griewank, A., Fauré, C., Hascoet, L., Naumann, U. (eds.) Automatic Differentiation of Algorithms: From Simulation to Optimization, ch. 33, pp. 283–291. Springer, Heidelberg (2002)

    Google Scholar 

  22. Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of Fortran 77-95 programs. PAMM 2(1), 54–57 (2003)

    Article  Google Scholar 

  23. Giering, R., Kaminski, T.: Automatic sparsity detection implemented as a source-to-source transformation. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 591–598. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Giering, R., Kaminski, T., Slawig, T.: Generating Efficient Derivative Code with TAF: Adjoint and Tangent Linear Euler Flow Around an Airfoil. Future Generation Computer Systems 21(8), 1345–1355 (2005)

    Article  Google Scholar 

  25. Giering, R., Kaminski, T., Todling, R., Errico, R., Gelaro, R., Winslow, N.: Generating tangent linear and adjoint versions of NASA/GMAO’s Fortran-90 global weather forecast model. In: Bücker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.) Automatic Differentiation: Applications, Theory, and Tools. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2005)

    Google Scholar 

  26. Giles, M.B., Duta, M.C., Mueller, J.D., Pierce, N.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)

    Article  Google Scholar 

  27. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software 1, 35–54 (1992)

    Article  Google Scholar 

  28. Griffies, S.M., Harrison, M.J., Pacanowski, R.C., Rosati, A.: The FMS MOM4-beta User Guide. Technical report, NOAA/Geophysical Fluid Dynamics Laboratory (2002)

    Google Scholar 

  29. Hall, K.C., Thomas, J.P.: Sensitivity analysis of coupled aerodynamic/structural dynamic behavior of blade rows. In: Extended Abstract for the 7th National Turbine Engine High Cycle Fatigue (HCF) Conference, Palm Beach Gardens, Florida, May 14-17 (2002)

    Google Scholar 

  30. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300, INRIA, Sophia Antipolis (2004)

    Google Scholar 

  31. Hascoët, L., Vázquez, M., Dervieux, A.: Automatic differentiation for optimum design, applied to sonic boom reduction. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003, Part II. LNCS, vol. 2668, pp. 85–94. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Heimbach, P., Hill, C., Giering, R.: An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation. Future Generation Computer Systems 21(8), 1356–1371 (2005)

    Article  Google Scholar 

  33. Hesse, M.: Entwicklung eines automatischen Gitterdeformationsalgorithmus zur Stroemungsberechnung um komplexe Konfiguration auf Hexaeder-Netzen. PhD thesis, RWTH Aachen (2006)

    Google Scholar 

  34. Hinze, M., Slawig, T.: Adjoint gradients compared to gradients from algorithmic differentiation in instataneous control of the Navier-Stokes equations. Optimization Methods & Software 18(3), 299–315 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hovland, P.D., Mohammadi, B., Bischof, C.H.: Automatic differentiation of Navier-Stokes computations. Technical Report MCS-P687-0997, Argonne National Laboratory (1997)

    Google Scholar 

  36. Kaminski, T., Giering, R., Scholze, M., Rayner, P., Knorr, W.: An example of an automatic differentiation-based modelling system. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003, Part II. LNCS, vol. 2668, pp. 95–104. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  37. Kaminski, T., Heimann, M.: Inverse modeling of atmospheric carbon dioxide fluxes. Science 294(5541), 259 (2001)

    Article  Google Scholar 

  38. Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  39. Marchuk, G.I.: Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  40. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(18), 1598–1605 (1994)

    Article  Google Scholar 

  41. Mohammadi, B., Malé, J.M., Rostaing-Schmidt, N.: Automatic differentiation in direct and reverse modes: Application to optimum shapes design in fluid mechanics. In: Berz, M., Bischof, C.H., Corliss, G.F., Griewank, A. (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 309–318. SIAM, Philadelphia (1996)

    Google Scholar 

  42. Othmer, C., Kaminski, T., Giering, R.: Computation of topological sensitivities in fluid dynamics: Cost function versatility. In: Wesseling, P., nate, E.O., Périaux, J. (eds.) ECCOMAS CFD 2006, TU Delft (2006)

    Google Scholar 

  43. Park, M.A., Green, L.L., Montgomery, R.C., Raney, D.L.: Determination of Stability and Control Derivatives Using Computational Fluid Dynamics and Automatic Differentiation. IAAA Paper 1999-3136, AIAA, Reston Va, USA (1999)

    Google Scholar 

  44. Raddatz, J., Fassbender, J.: Block Structured Navier-Stokes Solver FLOWer. In: Kroll, N., Fassbender, J.K. (eds.) MEGAFLOW- Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 27–44. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  45. Reimer, L., Hesse, M.: Kurzdokumentation des Mehrblock-Gitterdeformationsverfahrens MUGRIDO. Technical report, RWTH Aachen (2006)

    Google Scholar 

  46. Rostaing, N., Dalmas, S., Galligo, A.: Automatic differentiation in Odyssée. Tellus 45A, 558–568 (1993)

    Google Scholar 

  47. Rung, T., Luebcke, H., Franke, M., Xue, L., Thiele, F., Fu, S.: Assessment of explicit algebraic stress models in transonic flows. In: Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio, France, May 24-26, pp. 659–668 (1999)

    Google Scholar 

  48. Rung, T., Thiele, F.: Computational modelling of complex boundary-layer flows. In: Proceedings of the 9th Int. Symp. on Transport Phenomena in Thermal-Fluid Engineering, Singapore (1996)

    Google Scholar 

  49. Saad, Y.: Sparskit: A Basic Tool Kit for Sparse Matrix Computation (1994)

    Google Scholar 

  50. Shah, P.: Application of adjoint equations to estimation of parameters in distributed dynamic systems. In: Griewank, A., Corliss, G.F. (eds.) Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pp. 181–190. SIAM, Philadelphia (1991)

    Google Scholar 

  51. Spallart, P.R., Allmaras, S.R.: A One-Equation Model for Aerodynamic Flows. AIAA Journal 92(2) (1992)

    Google Scholar 

  52. Talagrand, O.: The use of adjoint equations in numerical modelling of the atmospheric circulation. In: Griewank, A., Corliss, G.F. (eds.) Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pp. 169–180. SIAM, Philadelphia (1991)

    Google Scholar 

  53. Taylor III, A.C., Green, L.L., Newman, P.A., Putko, M.M.: Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis. IAAA Paper 2001-2529, AIAA, Reston Va, USA (2001)

    Google Scholar 

  54. Thomas, J.P., Hall, K.C., Dowell, E.H.: A discrete adjoint approach for modeling unsteady aerodynamic design sensitivities. AIAA Journal 43(9), 1931–1936 (2005)

    Article  Google Scholar 

  55. Trampert, J., Snieder, R.: Model estimations biased by truncated expansions: Possible artifacts in seismic tomography. Science 271, 1257–1260 (1996)

    Article  MathSciNet  Google Scholar 

  56. Ulbrich, S.: Optimal Control of Nonlinear Hyperbolic Conservation Laws with Source Terms, Habilitationsschrift. Fakultät für Mathematik, Technische Universität München, Germany (2002)

    Google Scholar 

  57. Voßbeck, M., Giering, R., Kaminski, T.: Development and First Applications of TAC++. In: Bischof, C., Bücker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.) Advances in Automatic Differentiation, Berlin. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2008) (to appear)

    Google Scholar 

  58. Weaver, A.T., Vialard, J., Anderson, D.L.T.: Three-and Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks. Monthly Weather Review 131(7), 1360–1378 (2003)

    Google Scholar 

  59. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA, Aerospace Sciences Meeting 26, 1299–1310 (1988)

    MATH  MathSciNet  Google Scholar 

  60. Wilcox, D.C.: Turbulence Modeling for CFD, DCW Industries. Inc., La Canada, California (1993)

    Google Scholar 

  61. Zhu, J., Kamachi, M.: The Role of Time Step Size in Numerical Stability of Tangent Linear Models. Monthly Weather Review 128(5), 1562–1572 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giering, R., Kaminski, T., Eisfeld, B., Gauger, N., Raddatz, J., Reimer, L. (2009). Automatic Differentiation of FLOWer and MUGRIDO. In: Kroll, N., Schwamborn, D., Becker, K., Rieger, H., Thiele, F. (eds) MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04093-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04093-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04092-4

  • Online ISBN: 978-3-642-04093-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics