Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 107))

Abstract

Aeroelastic effects can play a significant role in wind-tunnel testing under high Reynolds number conditions, as shown for example within the European project HIRETT [12]. Due to the high static pressure in the wind tunnel the deformations can reach a magnitude which cannot be neglected, as shown for example in [3]. And also within the project EUROLIFT I a discrepancy has been found between the computed polar and the polar measured in the ETW wind tunnel. The discrepancy could be attributed to either model deformation, a non-uniform onflow due to the presence of wind tunnel walls or the influence of specific geometry installation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace, Science and Technology (AST) 5, 125–134 (2001)

    Article  MATH  Google Scholar 

  2. Britten, G., Braun, C., Hesse, M., Ballmann, J.: Computational Aeroelasticity with Reduced Structural models. In: Ballmann, J. (ed.) Flow Modulation and Fluid-Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84, pp. 275–299 (2003)

    Google Scholar 

  3. Braun, C., Boucke, A., Ballmann, J.: Numerical Study of the Influence of Dynamic Pressure and Deflected Ailerons on the Deformation of a High Speed Wing Model. In: The 7th Results and Review Workshop of the HLRS, at the High Performance Computing Center Stuttgart, October 4-6 (2004)

    Google Scholar 

  4. Gerhold, T.: Efficient Algorithms for Mesh Deformation. In: ODAS symposium Toulouse (2006)

    Google Scholar 

  5. Heinrich, R.: CFD study on model deformation using a TAU-ANSYS coupling procedure, EUROLIFT II technical report, D1.1.1-9 (2007)

    Google Scholar 

  6. Himisch, J., Horstmann, K.H., Streit, T., Nagel, B.: Design of a retrofit winglet for a transport aircraft. In: ODAS symposium Toulouse (2006)

    Google Scholar 

  7. Kroll, N., Fassbender, J.K. (Hrsg.): MEGAFLOW – Numerical Flow Simulation for Aircraft Design, 10.–11.12.2002. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 89. Springer, Closing Presentation DLR Project MEGAFLOW, Braunschweig (de), Heidelberg (2002)

    Google Scholar 

  8. Kroll, N., Gauger, N., Brezillon, J., Becker, K., Schulz, V.: Ongoing Activities in Shape Optimization Within The German Project MEGADESIGN. In: CD of ECCOMAS 2004, Jyväskylä (FI), July 24-28 (2004)

    Google Scholar 

  9. Puffert-Meißner: Static Deformation Test, EUROLIFT II report (1995)

    Google Scholar 

  10. Rudnik, R.: Towards CFD Validation for 3D High Lift Flows – EUROLIFT. In: Book of Abstracts – ECCOMAS CFD 2001, S. 70, ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea (gb), 04.–07.09 (2001) ISBN 0905091116

    Google Scholar 

  11. Rudnik, R., Geyr, H.v.: The European High-Lift Program EUROLIFT II. In: Aeronautics Days 2006, Vienna, June 19-21 (2006)

    Google Scholar 

  12. Rolston, S., Elsholz, E.: Initial Achievements of the European High Reynolds Number Aerodynamic Research Project HiReTT, AIAA paper 2002-424 (2002)

    Google Scholar 

  13. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: Recent Applications in Research and Industry. In: Proceedings of European Conference on Computational Fluid Dynamics, ECCOMAS CDF 2006, Delft The Netherland (2006)

    Google Scholar 

  14. Zwaan, I.R.J.: LANN Wing Pitching Oscillations, Compendium of Unsteady Aerodynamic Measurements, AGARD-R-702 (August 1982)

    Google Scholar 

  15. SFB 401: Strömungsbeeinflussung und Strömungs-Struktur-Wechselwirkung an Tragflügeln, Arbeits- und Ergebnisbericht (2002)

    Google Scholar 

  16. http://www.ansys.com

  17. http://www.leichtwerk.de

  18. http://www.mscsoftware.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinrich, R. (2009). Development and Application of TAU-ANSYS Coupling Procedure. In: Kroll, N., Schwamborn, D., Becker, K., Rieger, H., Thiele, F. (eds) MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04093-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04093-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04092-4

  • Online ISBN: 978-3-642-04093-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics