Advertisement

Behavioural Biometrics Hardware Based on Bioinformatics Matching

  • Slobodan Bojanić
  • Vukašin Pejović
  • Gabriel Caffarena
  • Vladimir Milovanović
  • Carlos Carreras
  • Jelena Popović
Conference paper
  • 669 Downloads
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 63)

Abstract

In this work we realized special hardware for intrusion detection systems (IDS) based on behavioural biometrics and using bionformatics’ Smith-Waterman algorithm. As far as we know there are no published hardware implementations of bioinformatics algorithms used for IDS. It is shown in the paper that the use of hardware can efficiently exploit the inherent parallelism of the algorithm and reach Gigabit data processing rates that are required for current communications. Each processing unit can be replicated many times on deployed Field Programmable Gate Array (FPGA) and depending on the capacity of the device, almost proportionally increase the throughput.

Keywords

behavioural biometrics intrusion detection pattern recognition FPGA bioinformatics Smith-Waterman algorithm dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojanić, S., Caffarena, G., Petrović, S., Nieto-Taladriz, O.: FPGA for pseudorandom generator cryptanalysis. Microprocessors and Microsystems 30(2), 63–71 (2006)CrossRefGoogle Scholar
  2. 2.
    Caffarena, G., Pedreira, C., Carreras, C., Bojanić, S., Nieto-Taladriz, O.: FPGA acceleration for DNA sequence alignment. Journal of Circuits, Systems and Computers 16(2), 245–266 (2007)CrossRefGoogle Scholar
  3. 3.
    Coull, S., Branch, J., Szymanski, B., Breimer, E.: Intrusion Detection: A Bioinformatics Approach. In: Proc. 19th Annual Computer Security Applications Conf, p. 24 (2003)Google Scholar
  4. 4.
    DuMouchel, W., Ju, W.H., Karr, A.F., Schonlau, M., Theusen, M., Vardi, Y.: Computer Intrusion: Detectiong Masquerades. Statistical Science 16(1), 58–74 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology 48, 443–453 (1970)CrossRefGoogle Scholar
  6. 6.
    Sai Krishna, V: Intrusion Detection Techniques: Pattern Matching and Protocol Analysis, Security Essentials (GSEC) Version 1.4b, April 26 (2003), http://www.giac.org/
  7. 7.
    Sinclair, C., Pierce, L., Matzner, S.: An Application of Machine Learning to Network Intrusion Detection. In: Proc. 1999 Anual Computer Security Applications Conf. (ACSAC), Phoenix, USA, December 1999, pp. 371–377 (1999)Google Scholar
  8. 8.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of molecular biology 147, 195–197 (1981)CrossRefGoogle Scholar
  9. 9.
    Tripp, G.: An intrusion detection system for gigabit networks – architecture and an example system. Technical Report 7-04, Computing Laboratory, University of Kent (April 2004)Google Scholar
  10. 10.
    Underwood, K.D., Hemmert, K.S.: Closing the gap: CPU and FPGA trends in sustainable floating-point BLAS performance. In: Proc. 2004 IEEE Symposium on field-programmable custom computing machines (FCCM 2004), USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Slobodan Bojanić
    • 1
  • Vukašin Pejović
    • 1
  • Gabriel Caffarena
    • 1
  • Vladimir Milovanović
    • 2
  • Carlos Carreras
    • 1
  • Jelena Popović
    • 2
  1. 1.ETSI TelecomunicaciónUniversidad Poltécnica de MadridMadridSpain
  2. 2.Faculty of electrical EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations