Skip to main content

Development of a Modular Method for Computational Aero-structural Analysis of Aircraft

  • Conference paper
Summary of Flow Modulation and Fluid-Structure Interaction Findings

Abstract

This paper outlines the development of the aero-structural dynamics method SOFIA over the duration of the Collaborative Research Center SFB 401. The algorithms SOFIA applies for the spatial and the temporal aero-structural dynamics coupling are presented. It is described in particular how SOFIA’s load and deformation transfer algorithms suitable for non-matching grids at the coupling interface were enhanced towards the application to complete aircraft configurations. The application of SOFIA to various subsonic and transonic aeroelastic test cases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mok, D.P.: Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Doctoral thesis, University Stuttgart, Germany (2001)

    Google Scholar 

  2. Kroll, N., Fassbender, J.K.: MEGAFLOW — Numerical flow simulation for aircraft design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  3. Boucke, A.: Kopplungswerkzeuge für aeroelastische Simulationen. Doctoral thesis, RWTH Aachen University, Germany (2003)

    Google Scholar 

  4. Braun, C.: Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen. Doctoral thesis, RWTH Aachen University, Germany (2007)

    Google Scholar 

  5. Hesse, M.: Entwicklung eines automatischen Gitterdeformationsalgorithmus zur Strömungsberechnung um komplexe Konfigurationen auf Hexaeder-Netzen. Doctoral thesis, RWTH Aachen University, Germany (2006)

    Google Scholar 

  6. Farhat, C., Lesoinne, M., LeTallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Meth. Appl. Mech. Eng. 157, 95–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Samareh, J.: Discrete Data Transfer Technique for Fluid-Structure Interaction. AIAA paper 2007-4309 (2007)

    Google Scholar 

  8. Beckert, A.: Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp. Sci. Technol. 4, 13–22 (2000)

    Article  MATH  Google Scholar 

  9. Badcock, K., Rampurawala, A., Richards, B.: Intergrid Transformation for Aircraft Aeroelastic Simulations. AIAA journal 42(9), 1936–1939 (2004)

    Article  Google Scholar 

  10. Hurka, J., Ballmann, J.: Elastic Panels in Transonic Flow. AIAA paper 2001-2722 (2001)

    Google Scholar 

  11. Massjung, R.: Discrete conservation and coupling strategies in nonlinear aeroelasticity. Comput. Meth. Appl. Mech. Eng. 190, 91–102 (2006)

    Article  MathSciNet  Google Scholar 

  12. Britten, G., Braun, C., Hesse, M., Ballmann, J.: Computational Aeroelasticity with Reduced Structural Models. In: Ballmann, J. (ed.) Flow Modulation and Fluid-Structure Interaction at Airplane Wings – Research Results of the Collaborative Research Center SFB 401 at RWTH Aachen University. Notes on Numerical Fluid Mechanics, vol. 84, pp. 275–299. Springer, Heidelberg (2003)

    Google Scholar 

  13. Britten, G.: Numerische Aerostrukturdynamik von Tragflügeln großer Spannweite. Doctoral thesis, RWTH Aachen University, Germany (2003)

    Google Scholar 

  14. Dafnis, A., Kämpchen, M., Reimerdes, H.G.: Aero-structural investigation on highly flexible wind tunnel wing models. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD 2001, Madrid, Spain, paper 093 (2001)

    Google Scholar 

  15. Kämpchen, M., Dafnis, A., Reimerdes, H.G., Britten, G., Ballmann, J.: Dynamic aero-structural response of an elastic wing model. J. Fluids and Structures 18, 63–77 (2003)

    Article  Google Scholar 

  16. Reimer, L., Braun, C., Ballmann, J.: Computational Study of the Aeroelastic Equilibrium Configuration of a Swept Wind Tunnel Wing Model in Subsonic Flow. In: Nagel, W.E., Jäger, W., Resch, M. (eds.) High Performance Computing in Science and Engineering 2006, pp. 421–434. Springer, Heidelberg (2006)

    Google Scholar 

  17. Reimer, L., Braun, C., Ballmann, J.: Analysis of the Static and Dynamic Aero-Structural Response of an Elastic Swept Wing Model by Direct Aeroelastic Simulation. In: Proc. of the International Council of the Aeronautical Sciences ICAS 2006, Hamburg, Germany, paper ICAS 2006-10.3.3 (2006)

    Google Scholar 

  18. Rolston, S.: Initial Achievements of the European High Reynolds Number Research Project HiReTT. AIAA paper 2002-0421 (2002)

    Google Scholar 

  19. Braun, C., Boucke, A., Hanke, M., Karavas, A., Ballmann, J.: Prediction of the Model Deformation of a High Speed Transport Aircraft Type Wing by Direct Aeroelastic Simulation. In: Krause, E., Jäger, W., Resch, M. (eds.) High Performance Computing in Science and Engineering 2003, pp. 331–342. Springer, Heidelberg (2003)

    Google Scholar 

  20. Braun, C., Boucke, A., Ballmann, J.: Numerical Prediction of the Wing Deformation of a High-Speed Transport Aircraft Type Windtunnel Model by Direct Aeroelastic Simulation. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD 2005, Munich, Germany, paper IF-147 (2005)

    Google Scholar 

  21. Ballmann, J., Boucke, A., Dickopp, C., Reimer, L.: Results of Dynamics Experiments in the HIRENASD Project and Analysis of Observed Unsteady Processes. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD 2009, Seattle, USA, paper IFASD-2009-103 (2009)

    Google Scholar 

  22. Korsch, H., Dafnis, A., Reimerdes, H.G.: Dynamic qualification of the HIRENASD elastic wing model. Aerosp. Sci. Technol. 13(2-3), 130–138 (2009)

    Article  Google Scholar 

  23. Reimer, L., Braun, C., Chen, B.H., Ballmann, J.: Computational Aeroelastic Design and Analysis of the HIRENASD Wind Tunnel Wing Model and Tests. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD 2007, Stockholm, Sweden, paper IF-077 (2007)

    Google Scholar 

  24. Reimer, L., Boucke, A., Ballmann, J., Behr, M.: Computational Analysis of High Reynolds Number Aero-Structural Dynamics (HIRENASD) Experiments. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD 2009, Seattle, USA, paper IFASD-2009-130 (2009)

    Google Scholar 

  25. Chen, B.H., Brakhage, K.H., Behr, M., Ballmann, J.: Numerical simulations for preparing new ASD experiments in ETW with a modified HIRENASD wing model. In: Proc. of the International Forum on Aeroelasticity and Structural Dynamics IFASD, Seattle, USA, paper IFASD-2009-131 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reimer, L., Braun, C., Wellmer, G., Behr, M., Ballmann, J. (2010). Development of a Modular Method for Computational Aero-structural Analysis of Aircraft. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics