Skip to main content

Interaction of Wing-Tip Vortices and Jets in the Extended Wake

  • Conference paper

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 109))

Abstract

The interaction of wing-tip vortices and jets in the extended wake is experimentally and numerically investigated. The measurements focus on the unsteady wake of a swept-wing half-model equipped with an engine jet and on the analysis of meandering vortex. The aircraft engine is modeled by a cold jet driven by pressurized air. To investigate the influence of the location of the engine jet on the vortex wake, it is mounted in two different positions under the wing model. The spatial development of a vortex wake behind a wing is simulated up to the extended near field. The measurements are used as inflow distribution for a large-eddy simulation (LES) of the wake region. To better capture the motion of the wake vortices a method for hexahedral block structured adaptive mesh refinement with vertex-centered fluxes is introduced. The numerical simulations of the wake are able to predict trajectories and instabilities of the vortex core. The closer the engine is located near the root of the wing, the smaller is the deflection of the vortex and the fewer wave modes of the vortex are excited. The meandering motion of the vortex core is triggered by the engine jet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aftosmis, M.J.: Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA J. 32(2), 268–277 (1994)

    Article  MATH  Google Scholar 

  2. Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. & Fluids 35(10), 1126–1136 (2006)

    Article  MATH  Google Scholar 

  3. Baker, G.R., Barker, S.J., Bofah, K.K., Saffman, P.G.: Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325–336 (1974)

    Article  Google Scholar 

  4. Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence on a trailing vortex. Experiments in Fluids 38, 244–257 (2005)

    Article  Google Scholar 

  5. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, M.J., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man and Cybernetics 21(5), 1278–1286 (1991)

    Article  Google Scholar 

  7. Bradshaw, P., Ferris, D.H., Atwell, M.P.: Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech. 28, 593–616 (1967)

    Article  Google Scholar 

  8. Brunet, S., Garnier, F., Sagaut, P.: Crow instability effects on the exhaust plume mixing and condensation. In: Third International Workshop on Vortex Flows and Related Numerical Methods. European Series in Applied and Industrial Mathematics, vol. 7, pp. 69–79 (1999), http://www.emath.fr/proc/Vol.7/

  9. Crouch, J.D.: Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179 (1970)

    Article  Google Scholar 

  11. Deister, F.J.: Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Ber echnung von Strömungen um komplexe Konfigurationen. Ph.D. thesis, University Stuttgart (2002)

    Google Scholar 

  12. Devenport, W.J., Rife, M.C., Liapis, S.I., Follin, G.J.: The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996)

    Article  MathSciNet  Google Scholar 

  13. Fabre, D., Jacquin, L.: Stability of a four-vortex aircraft wake model. Phys. Fluids 12(10), 2438–2443 (2000)

    Article  MathSciNet  Google Scholar 

  14. Fabre, D., Jacquin, L., Loof, A.: Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319–328 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fares, E.: Numerical simulation of the interaction of wingtip vortices and engine jets in the near field. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2002)

    Google Scholar 

  16. Fares, E., Schröder, W.: Analysis of Wakes and Wake-Jet Interaction. Notes on Numerical Fluid Mechanics 84, 57–84 (2003)

    Google Scholar 

  17. Fares, E., Schröder, W.: A general one-equation turbulence model for free shear and wall-bound ed flows. Flow, Turbulence and Combustion 73(3-4), 187–215 (2005)

    Article  Google Scholar 

  18. Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37(5), 544–556 (1999)

    Article  Google Scholar 

  19. Gago, C.F., Brunet, S., Garnier, F.: Numerical Investigation of Turbulent Mixing in a Jet/Wake Vortex Interaction. AIAA J. 40(2), 276–284 (2002)

    Article  Google Scholar 

  20. Guo, X., Schröder, W., Meinke, M.: Large-eddy simulations of film cooling flows. Comput. & Fluids 35(6), 587–606 (2006)

    Article  MATH  Google Scholar 

  21. Holzäpfel, F., Gerz, T.: Two-dimensional wake vortex physics in the stably stratified atmosphere. Aerosp. Sci. Technol. 5, 261–270 (1999)

    Article  Google Scholar 

  22. Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5, 95–108 (2001)

    Article  MATH  Google Scholar 

  23. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Wake vortex evolution and decay mechanisms in the atmosphere. In: Proceedings of 3rd ONERA–DLR Aerospace Symposium, Paris, France, p. 10 (2001)

    Google Scholar 

  24. Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263–275 (2003)

    Article  MATH  Google Scholar 

  25. Huppertz, G., Fares, E., Abstiens, R., Schröder, W.: Investigation of engine jet/wing-tip vortex interference. Aerosp. Sci. Technol. 8(3), 175–183 (2004)

    Article  Google Scholar 

  26. Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7, 577–593 (2003)

    Article  Google Scholar 

  27. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Keyser, J.D., Roose, D.: A software tool for load balanced adaptive multiple grids on distributed memory computers. In: Proceedings of The Sixth Distributed Memory Computing Conference, 1991, pp. 122–128 (1991)

    Google Scholar 

  29. Labbe, O., Maglaras, E., Garnier, F.: Large-eddy simulation of a turbulent jet and wake vortex interaction. Comput. & Fluids 36(4), 772–785 (2007)

    Article  MATH  Google Scholar 

  30. Laporte, F., Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12(5), 1016–1031 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laporte, F., Leweke, T.: Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. AIAA J. 40(12), 2483–2494 (2002)

    Article  Google Scholar 

  32. Lapworth, B.L.: Three-dimensional mesh embedding for the navier-stokes equations using upwind control volumes. International Journal for Numerical Methods in Fluids 17, 195–220 (1993)

    Article  MATH  Google Scholar 

  33. Le Dizès, S., Laporte, F.: Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Loiseleux, T., Chomaz, J.M., Huerre, P.: The effect of swirl on jets and wakes: Linear instability of the rankine vortex with axial flow. Physics of Fluids 10(5), 1120–1134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, G., Lele, S.K.: Inviscid instability of compressible swirling mixing layers. Physics of Fluids 11(2), 450–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Margaris, P., Marles, D., Gursul, I.: Experiments on jet/vortex interaction. Experiments in Fluids 44, 261–278 (2008)

    Article  Google Scholar 

  38. Mavriplis, D.J.: Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes. International Journal for Numerical Methods in Fluids 34, 93–112 (2000)

    Article  MATH  Google Scholar 

  39. McDill, J.M., Goldak, J.A., Oddy, A.S., Bibby, M.J.: Isoparametric quadrilaterals and hexahedrons for mesh-grading algorithms. Communications in Applied Numerical Methods 3(2), 155–163 (1987)

    Article  MATH  Google Scholar 

  40. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulations. Comput. & Fluids 31, 695–718 (2002)

    Article  MATH  Google Scholar 

  41. Meunier, P., Dizes, S.L., Leweke, T.: Physics of vortex merging. C. R. Physique 6, 431–450 (2005)

    Article  Google Scholar 

  42. Meunier, P., Leweke, T.: Three-dimensional instability during vortex merging. Phys. Fluids 13(10), 2747–2750 (2001)

    Article  Google Scholar 

  43. Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 124–159 (2005)

    Article  MathSciNet  Google Scholar 

  44. Miake-Lye, R., Martinez-Sanchez, M., Brown, R.C., Kolb, C.E.: Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. J. Aircraft 30(4), 467–479 (1993)

    Article  Google Scholar 

  45. Moir, I.R.M.: Measurements on a two-dimensional aerofoil with high-lift devices. AGARD AR-303 2, 58–59 (1994)

    Google Scholar 

  46. Nagano, Y., Pei, C., Hattori, H.: A new low-Reynolds-number one-equation model of turbulence. Flow, Turbulence and Combustion 63, 135–151 (1999)

    Article  Google Scholar 

  47. Paoli, R., Laporte, F., Cuenot, B., Poinsot, T.: Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15(7), 1843–1860 (2003), doi:10.1063/1.1575232

    Article  MathSciNet  Google Scholar 

  48. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer, Heidelberg (2007)

    Google Scholar 

  49. Rantakokko, J.: Partitioning strategies for structured multiblock grids. Parallel Comput. 26(12), 1661–1680 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids 17(3), 035, 107 (2005), doi:10.1063/1.1852573

    Article  Google Scholar 

  51. Schlichting, H., Truckenbrodt, E.A.: Aerodynamik des Flugzeuges, vol. 2. Springer, Heidelberg (2001)

    Google Scholar 

  52. Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained lamb-oseen vortex. Phys. Fluids 12(7), 1715–1729 (2000)

    Article  MathSciNet  Google Scholar 

  53. Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30(1), 107–138 (1998)

    Article  MathSciNet  Google Scholar 

  54. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Arodynamic Flows. Paper 92-0439, AIAA (1992); 30th Aerospaace Sciences Meeting & Exhibit, January 6-9, Reno

    Google Scholar 

  55. Steensland, J.: Adaptive Mesh Refinement on Structured Grids. An Overview (1998), http://user.it.uu.se/~johans/research/overview.ps

  56. Stumpf, E.: Untersuchung von 4-Wirbelsystemen zur Minimierung von Wirbelschleppen und ihre Realisierung an Transportflugzeugen. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2003)

    Google Scholar 

  57. Stumpf, E., Wild, J., Dafa’Alla, A.A., Meese, E.A.: Numerical Simulations of the Wake Vortex Near Field of High-Lift Configurations. In: Neittaanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D. (eds.) European Congress on Computational Methods in Applied Sciences an Engineering ECCOMAS 2004, Jyväskylä (2004)

    Google Scholar 

  58. Tóth, G., Roe, P.L.: Divergence- and curl-preserving prolongation and restriction formulas. J. Comput. Phys. 180(2), 736–750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Townsend, A.A.: The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  60. Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2(1), 76–80 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  61. Watts, J., Taylor, S.: A Practical Approach to Dynamic Load Balancing. IEEE Transactions on Parallel and Distributed Systems 09(3), 235–248 (1998)

    Article  Google Scholar 

  62. Wilcox, D.C.: Reasessment of the scale-determining equation for advanced turbulence models. AIAA Journal 26, 1299–1310 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wilcox, D.C., Traci, R.M.: A complete model of turbulence. Tech. Rep. AIAA Paper No. 76-351, American Institute of Aeronautics and Astronautics (1976)

    Google Scholar 

  64. Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12, 1062–1072 (2000), doi:10.1063/1.870361

    Article  MathSciNet  MATH  Google Scholar 

  65. Zurheide, F., Schröder, W.: Numerical Analysis of Wing Vortices. In: Tropea, C., Jakirlic, S., Heinemann, H.J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics VI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 17–25. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zurheide, F.T., Huppertz, G., Fares, E., Meinke, M., Schröder, W. (2010). Interaction of Wing-Tip Vortices and Jets in the Extended Wake. In: Schröder, W. (eds) Summary of Flow Modulation and Fluid-Structure Interaction Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04088-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04088-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04087-0

  • Online ISBN: 978-3-642-04088-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics