Skip to main content

First Applications

  • Chapter
  • First Online:
Permutation Complexity in Dynamical Systems

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 983 Accesses

Abstract

In this chapter we present four applications of permutation entropy and ordinal patterns: entropy estimation, complexity analysis, recovery of parameters from itineraries, and synchronization analysis of time series. The scope is to give the reader a multifaceted picture of ordinal analysis in action. Two more applications (to determinism detection and to space–time chaos) will be discussed at length in Chaps. 9 and 10, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. H.D.I. Abarbanel, Analysis of Observed Chaotic Data. Springer, New York, 1996.

    Google Scholar 

  2. G. Alvarez, M. Romera, G. Pastor, and F. Montoya, Gray codes and 1D quadratic maps, Electronic Letters 34 (1998) 1304–1306.

    Article  Google Scholar 

  3. J.M. Amigó, J. Szczepanski, E. Wajnryb, and M.V. Sanchez-Vives, Estimating the entropy of spike trains via Lempel-Ziv complexity, Neural Computation 16 (2004) 717–736.

    Article  MATH  Google Scholar 

  4. D. Arroyo, G. Alvarez, and J.M. Amigó, Estimation of the control parameter from symbolic sequences: Unimodal maps with variable critical point, Chaos 19 (2009) 023125.

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Ay and J.P. Crutchfield, Reductions of hidden information sources, Journal of Statistical Physics 120 (2005) 659–684.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Physical Review Letters 88 (2002) 174102.

    Article  ADS  Google Scholar 

  7. C. Bandt and F. Shiha, Order patterns in time series, Journal of Time Series Analysis 28 (2007) 646–665.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Boccaletti and D.L. Valladares, Characterization of intermittent lag synchronization, Physical Review E 62 (2000) 7497–7500.

    Article  ADS  Google Scholar 

  9. Y. Cao, W. Tung, J.B. Gao, V.A. Protopopescu, and L.M. Hively, Detecting dynamical changes in time series using the permutation entropy, Physical Review E 70 (2004) 046217.

    Article  MathSciNet  ADS  Google Scholar 

  10. R.W. Clarke, M.P. Freeman, and N.W. Watkins, Application of computational mechanics to the analysis of natural data: An example in geomagnetism, Physical Review E 67 (2003) 016203.

    Article  ADS  Google Scholar 

  11. P. Collet and J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, 5th printing. Birkhäuser, Boston, 1997.

    Google Scholar 

  12. T.M. Cover and J.A. Thomas, Elements of Information Theory, 2nd edition. New York, John Wiley & Sons, 2006.

    MATH  Google Scholar 

  13. J.P. Crutchfield and K. Young, Inferring statistical complexity, Physical Review Letters 63 (1989) 105–108.

    Article  MathSciNet  ADS  Google Scholar 

  14. J.P. Eckmann, S.O. Kamphorst, and D. Ruelle, Recurrence plots of dynamical systems, Europhysics Letters 4 (1987) 973–977.

    Article  ADS  Google Scholar 

  15. A. Fernández, J. Quintero, R. Hornero, P. Zuluaga, M. Navas, C. Gómez, J. Escudero, N. García-Campos, J. Biederman, and T. Ortiz, Complexity analysis of spontaneous brain activity in attention-deficit/hyperactivity disorder: Diagnosis implications, Biological Psychiatry 65 (2009) 571–577.

    Article  Google Scholar 

  16. A.M. Fraser and H.L. Swinney, Independent coordinates for strange attractors from mutual information, Physical Review A 33 (1986) 1134–1140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J.B. Gao and H.Q. Cai, On the structures and quantification of recurrence plots, Physics Letters A 270 (2000) 75–87.

    Article  ADS  Google Scholar 

  18. Y. Gao, I. Kontoyiannis, and E. Bienenstock, Estimating the entropy of binary time series: Methodology, some theory and a simulation study, Entropy 10 (2008) 71–99.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. P. Grassberger, Finite sample corrections to entropy and dimension estimates, Physics Letters A 128 (1988) 369–373.

    Article  MathSciNet  ADS  Google Scholar 

  20. F. Gu, X. Meng, E. Shen, and Z. Cai, Can we measure consciousness with EEG complexities?, International Journal of Bifurcations and Chaos 13 (2003) 733–742.

    Article  MATH  Google Scholar 

  21. H. Herzel, Complexity of symbol sequences, Systems, Analysis, Modelling, Simulations 5 (1988) 435–444.

    MATH  MathSciNet  Google Scholar 

  22. H. Herzel, A.O. Schmitt, and W. Ebeling, Finite sample effects in sequence analysis, Chaos, Solitons & Fractals 4 (1994) 97–113.

    Article  MATH  ADS  Google Scholar 

  23. M.W. Hirsch, S. Smale, and R.L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, San Diego, 2003.

    Google Scholar 

  24. O. Jenkinson and M. Pollicott, Entropy, exponents and invariant densities for hyperbolic systems: Dependence and computation. In: M. Brin, B. Hasselblatt, and Y. Pesin (Eds.), Modern Dynamical Systems and Applications. pp. 365–384 Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  25. H. Kantz, Quantifying the closeness of fractal measures, Physical Review E 49 (1994) 5091–5097.

    Article  ADS  Google Scholar 

  26. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  27. K. Keller and K. Wittfeld, Distances of time series components by means of symbolic dynamics, International Journal of Bifurcation and Chaos 14 (2004) 693–703.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Keller, H. Lauffer, and M. Sinn, Ordinal analysis of EEG time series, Chaos and Complexity Letters 2 (2007) 247–258.

    Google Scholar 

  29. M.B. Kennel, Statistical test for dynamical nonstationarity in observed time-series data, Physical Review E 56 (1997) 316–321.

    Article  ADS  Google Scholar 

  30. I. Kontoyiannis, P.H. Algoet, Y.M. Suhov, and A.J. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text. IEEE Transactions on Information Theory 44 (1998) 1319–1327.

    Article  MATH  MathSciNet  Google Scholar 

  31. A.P. Kurian and S. Puttusserypady, Self-synchronizing chaotic stream ciphers, Signal Processing 88 (2008) 2442–2452.

    Article  MATH  Google Scholar 

  32. A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society 186 (1973), 481–488.

    Article  MathSciNet  Google Scholar 

  33. M.T. Martin, A. Plastino, and O.A. Rosso, Generalized statistical complexity measures: Geometrical and analytical properties, Physica A 369 (2006) 439–462.

    Article  ADS  Google Scholar 

  34. N. Marwan, M.C. Romano, M. Thiel, and J. Kurths, Recurrence plots for the analysis of complex systems, Physics Reports 438 (2007) 237–329.

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Matilla-García, A non-parametric test for independence based on symbolic dynamics, Journal of Economic Dynamic & Control 31 (2007) 3889–3903.

    Article  MATH  Google Scholar 

  36. M. Matilla-García and M. Ruiz Marín, A non-parametric independence test using permutation entropy, Journal of Econometrics 144 (2008) 139–155.

    Article  MathSciNet  Google Scholar 

  37. W. de Melo and S. van Strien, One-Dimensional Dynamics. Springer Verlag, Berlin, 1993.

    Google Scholar 

  38. N. Metropolis, M. Stein, and P. Stein, On finite limit sets for transformations on the unit interval, Journal of Combinatorial Theory, Series A 15, 25–44 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Monetti, W. Bunk, T. Aschenbrenner, and F. Jamitzky, Characterizing synchronization in time series using information measures extracted from symbolic representations, Physical Review E 79 (2009) 046207.

    Article  ADS  Google Scholar 

  40. E. Olbrich, N. Bertschinger, N. Ay, and J. Jost, How should complexity scale with system size?, The European Physical Journal B 63 (2008) 407–415.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, Geometry from a time series, Physical Review Letters 45 (1980) 712–716.

    Article  ADS  Google Scholar 

  42. L. Paninski, Estimation of entropy and mutual information, Neural Computation 15 (2003) 1191–1253.

    Article  MATH  Google Scholar 

  43. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  44. M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Physical Review Letters 76 (1997) 1804–1807.

    Article  ADS  Google Scholar 

  45. A.N. Sarkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrainian Mathematical Journal 16 (1964) 61–71.

    MathSciNet  Google Scholar 

  46. P.R. Scalassara, M.E. Dajer, C. Dias Maciel, C. Capobianco Guido, and J.C. Pereira, Relative entropy measures applied to healthy and pathological voice characterization, Applied Mathematics and Computation 207 (2009) 95–108.

    Article  MATH  Google Scholar 

  47. A.O. Schmitt, H. Herzel, and W. Ebeling, A new method to calculate higher-order entropies from finite samples, Europhysics Letters 23 (1993) 303–309.

    Article  ADS  Google Scholar 

  48. T. Schreiber, Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions, Physical Review Letters 78 (1997) 843–846.

    Article  ADS  Google Scholar 

  49. C.R. Shalizi and J.P. Crutchfield, Computational mechanics: Pattern and prediction, structure and simplicity, Journal of Statistical Physics 104 (2001) 817–879.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Sinn and K. Keller, Estimation of ordinal pattern probabilities in fractional Brownian motion, arXiv:0801.1598.

    Google Scholar 

  51. S.P. Strong, R. Koberle, R.R. de Ruyter van Steveninck, and W. Bialek, Entropy and information in neural spike trains. Physical Review Letters 80 (1998) 197–200.

    Article  ADS  Google Scholar 

  52. J. Szczepanski, J.M. Amigó, E. Wajnryb, and M.V. Sanchez-Vives. Application of Lempel-Ziv complexity to the analysis of neural discharges, Network: Computation in Neural Systems 14 (2003) 335–350.

    Article  Google Scholar 

  53. F. Takens, Detecting strange attractors in turbulence, In: D. Rand and L.S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898. Springer, Berlin, 1981, pp. 366–381.

    Google Scholar 

  54. D.B. Vasconcelos, S.R. Lopes, R.L. Viana, and J. Kurths, Spatial recurrence plots, Physical Review E 73 (2006) 056207.

    Article  MathSciNet  ADS  Google Scholar 

  55. L. Wang and N.D. Kazarinoff, On the universal sequence generated by a class of unimodal functions, Journal of Combinatorial Theory, Series A 46 (1987) 39–49.

    Article  MATH  MathSciNet  Google Scholar 

  56. X-S. Zhang, R.J. Roy, and E.W. Jensen, EEG complexity as a measure of depth anesthesia for patients, IEEE Transactions on Biomedical Engineering 48 (2001) 1424–1433.

    Article  Google Scholar 

  57. J. Zhang and M. Small, Complex networks from pseudoperiodic time series: Topology versus dynamics. Physical Review Letters 96 (2006) 238701.

    Article  ADS  Google Scholar 

  58. L. Zunino, D.G. Pérez, M.T. Martín, M. Garavaglia, A. Plastino, and O.A. Rosso, Permutation entropy of fractional Brownian motion and fractional Gaussian noise, Physics Letters A 372 (2008) 4768–4774.

    Article  ADS  Google Scholar 

  59. L. Zunino, D.G. Pérez, M.T. Martín, M. Garavaglia, A. Plastino, and O.A. Rosso, Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy, Physica A 387 (2008) 6057–6068.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Amigó .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amigó, J.M. (2010). First Applications. In: Permutation Complexity in Dynamical Systems. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04084-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04084-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04083-2

  • Online ISBN: 978-3-642-04084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics