Skip to main content

Space–Time Dynamics

  • Chapter
  • First Online:
  • 973 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

All applications of ordinal analysis hitherto had to do with time series analysis or abstract dynamical systems. A remaining challenge is to expand the applications to physical systems.

In order to tackle the viability of this program, we are going to study the permutation complexity of two simple models of spatially extended physical systems: cellular automata (CA) and coupled map lattices (CMLs). CA were presented in Sect. 1.5. CMLs can be considered as a generalization of the CA; they retain the space coarse graining of the CA, but the state variable take on real values. Despite their apparent simplicity, these are the preferred models when studying the emergence of collective phenomena (such as turbulence, space–time chaos, symmetry breaking, ordering) in systems of many particles interacting nonlinearly. Indeed, their ability to reproduce complex phenomena in, say, fluid dynamics and solid state physics, is impressive. For this reason, they are the ideal choice for our purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. C. Anteneodo, A.M. Batista, and R.L. Viana, Synchronization threshold in coupled logistic map lattices, Physica D. Nonlinear Phenomena 223 (2006) 270–275.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. N. Aoki and K. Hiraide, Topological theory of dynamical systems. North Holland, Amsterdam, 1994.

    Google Scholar 

  3. H. Atmanspacher and H. Scheingraber, Inherent global stabilization of unstable local behavior in coupled map lattices, International Journal of Bifurcation and Chaos 15 (2005) 1665–1676.

    Article  MATH  MathSciNet  Google Scholar 

  4. L.A. Bunimovich and Y.G. Sinai, Space-time chaos in coupled map lattices, Nonlinearity 1 (1988) 491–518.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. L.A. Bunimovich, Coupled map lattices: Some topological and ergodic properties, Physica D. Nonlinear Phenomena 103 (1997) 1–17.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. Carretero-González, Low dimensional travelling interfaces in coupled map lattices, International Journal of Bifurcations and Chaos 7 (1997) 2745–2754.

    Article  MATH  Google Scholar 

  7. R. Carretero-González, D.K. Arrowsmith, and F. Vivaldi, One-dimensional dynamics for traveling fronts in coupled map lattices, Physical Review E 61 (2000) 1329–1336.

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Chaté and P. Manneville, Coupled map lattices as cellular automata, Journal of Statistical Physics 56 (1989) 357–370.

    Article  MathSciNet  ADS  Google Scholar 

  9. L.O. Chua, V.I. Sbitnev, and S. Yoon, A nonlinear dynamics perspective of Wolfram’s New Kind of Science –Part II: Universal neuron, International Journal of Bifurcation and Chaos 13 (2003) 2377–2491.

    Article  MATH  MathSciNet  Google Scholar 

  10. L.O. Chua, V.I. Sbitnev, and S. Yoon, A nonlinear dynamics perspective of Wolfram’s new kind of science –Part IV: From Bernoulli shift to 1/f spectrum, International Journal of Bifurcation and Chaos 15 (2005) 1045–1183.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Courbage, D. Mercier, and S. Yasmineh, Traveling waves and chaotic properties in cellular automata, Chaos 9 (1999) 893–901.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. M. D’amico, G. Manzini, and L. Margara, On computing the entropy of cellular automata, Theoretical Computer Science 290 (2003) 1629–1646.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Dobyns and H. Atmanspacher, Characterizing spontaneous irregular behavior in coupled map lattices, Chaos, Solitons & Fractals 24 (2005) 313–327.

    MATH  ADS  Google Scholar 

  14. G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory 3 (1969) 320–375.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Israeli and N. Goldenfeld, Coarse-graining of cellular automata, emergence, and the predictability of complex systems, Physical Review E 73 (2006) 1–17.

    Article  MathSciNet  Google Scholar 

  16. S. Jalan, J. Jost, and F.M. Atay, Symbolic synchronization and the detection of global properties of coupled dynamics from local information, Chaos 16 (2006) 033124.

    Article  ADS  Google Scholar 

  17. K. Kaneko, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking, Progress in Theoretical Physics 69 (1983) 1427–1442.

    Article  MATH  ADS  Google Scholar 

  18. K. Kaneko, Period-doubling of kink-antikink patterns, quasiperiodicity in anti-ferro-like structures and spatial intermittency in coupled logistic lattice, Progress in Theoretical Physics 72 (1984) 480–486.

    Article  MATH  ADS  Google Scholar 

  19. K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D. Nonlinear Phenomena 34 (1989) 1–41.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. K. Kaneko, Chaotic traveling waves in a coupled map lattice, Physica D. Nonlinear Phenomena 68 (1993) 299–317.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. B.P. Kitchens, Symbolic Dynamics. Springer Verlag, Berlin, 1998.

    Google Scholar 

  22. J. Kurths, D. Maraun, C.S. Zhou, G. Zamora-López, and Y. Zou, Dynamics in complex systems, European Review 17 (2009), 357–370.

    Article  Google Scholar 

  23. G. Manzini and L. Margara, A complete and efficiently computable topological classification of linear cellular automata over \(\mathbb{Z}_{m}\), Theoretical Computer Science 221 (1999) 157–177.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Masoller and A.C. Martí, Random delays and the synchronization of chaotic maps, Physical Review Letters 94 (2005) 134102.

    Article  ADS  Google Scholar 

  25. M. Newman, A.L. Barabási, and D.J. Watts, The Structure and Dynamics of Networks. Princeton University Press, Princeton, 2006.

    Google Scholar 

  26. S.D. Pethel, N.J. Corron, and E. Bollt, Symbolic dynamics of coupled map lattices, Physical Review Letters 96 (2006) 034105.

    Article  ADS  Google Scholar 

  27. S.D. Pethel, N.J. Corron, and E. Bollt, Deconstructing spatiotemporal chaos using local symbolic dynamics, Physical Review Letters 99 (2007) 214101.

    Article  ADS  Google Scholar 

  28. M.A. Shereshevsky, Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indagationes Mathematicae 4 (1993) 203–210.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Sotelo Herrera and J. San Martín, Analytical solutions of weakly coupled map lattices using recurrence relations, Physics Letters A 373 (2009) 2704–2709.

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D. Nonlinear Phenomena 16 (1985) 285–317.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. S. Wolfram, Universality and complexity in cellular automata, Physica 10D (1984) 1–35.

    MathSciNet  ADS  Google Scholar 

  32. S. Wolfram, A New Kind of Science. Wolfram Media, Champaign, 2002.

    Google Scholar 

  33. G.C. Zhuang, J. Wang, Y. Shi, and W. Wang, Phase synchronization and its cluster feature in two-dimensional coupled map lattices, Physical Review E 66 (2002) 046201.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Amigó .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amigó, J.M. (2010). Space–Time Dynamics. In: Permutation Complexity in Dynamical Systems. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04084-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04084-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04083-2

  • Online ISBN: 978-3-642-04084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics