Skip to main content

On Stokes' Problem

  • Chapter
  • First Online:

Abstract

We consider the Stokes problem of viscous hydrodynamics in bounded and exterior Lipschitz domains O of with boundary datum in. We show that this problem has a unique very weak solution in bounded domains. As far as exterior domains are concerned, we prove that a very weak solution exists such that at infinity, with pk a Stokes's polynomial of degree k, if and only if the data satisfy a suitable compatibility condition. In particular, we derive the well-known Stokes'paradox of hydrodynamics for very weak solutions. We use this results to prove the existence of a very weak solution to the Navier-Stokes problem in bounded and exterior Lipschitz domains of by requiring that the boundary datum belongs to.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann, Nonhomogeneous Navier–Stokes equations with integrable low–regularity data, Int. Math. Ser. Kluwer Academic/Plenum Publishing, New York, 1–26 (2002)

    Google Scholar 

  2. C.J. Amick, Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad. 67, 171–175 (1990)

    MathSciNet  Google Scholar 

  4. J. Bergh and J. Lofstfröm, Interpolation Spaces. An Introduction, Springer–Verlag, Berlin (1976)

    MATH  Google Scholar 

  5. W. Borchers and K. Pileckas, Note on the flux problem for stationary Navier–Stokes equations in domains with multiply connected boundary. Acta Appl. Math. 37, 21–30 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Bortone and G. Starita, On the motion of spheroid in a viscous fluid. Rend. Acc. Sci. Napoli 70, 119–151 (2003)

    MATH  MathSciNet  Google Scholar 

  7. R.M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains. Indiana Univ. Math. J. 44, 1183–1206 (1995)

    MATH  MathSciNet  Google Scholar 

  8. A.P. Calderòn, Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA 74, 1324–1327 (1977)

    Article  MATH  Google Scholar 

  9. S. Campanato, Equazioni Ellittiche del secondo ordine e spazi \(\mathcal{ L}^{2,\lambda}\) . Ann. Mat. Pura Appl. 73, 321–380 (1965)

    MathSciNet  Google Scholar 

  10. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Padova 31, 308–340 (1961)

    MATH  MathSciNet  Google Scholar 

  11. I-D Chang and R. Finn, On the solutions of a class of equations occurring in continuum mechanics, with applications to the Stokes paradox. Arch. Rational Mech. Anal. 7, 388–401 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. H. J. Choe and B.J. Jin, Characterization of generalized solutions for the homogeneous Stokes equations in exterior domains. Nonlinear Anal. 48, 765–779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. R.R. Coifman, A. McIntosh and Y. Meyer, L’intégrale de Cauchy definit un operateur borné sur L 2 pour les courbes Lipschitziennes. Ann. Math. 122, 361–387 (1982)

    Article  MathSciNet  Google Scholar 

  14. V. Coscia and R. Russo, Some remarks on the Dirichlet problem in plane exterior domains. Ricerche Mat. 53 (2007)

    Google Scholar 

  15. B.J. Dahlberg, C.E. Kenig and G.C. Verchota, Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, vol. I, Springer, Berlin (1990)

    MATH  Google Scholar 

  17. E. De Giorgi, Osservazioni relative ai teoremi di unicità per le equazioni differenziali a derivate parziali di tipo ellittico, con condizioni al contorno di tipo misto. Ricerche Mat. 2, 183–191 (1954)

    Google Scholar 

  18. P. Deuring and W. Von Wahl, Das lineare Stokes system in ℝ3, I, II. Bayreuth Math. Schr. 27, 1–252 (1988), 28, 1–109 (1989)

    Google Scholar 

  19. E. De Vito, Sulle funzioni ad integrale di Dirichlet finito. Ann. Sc. Norm. Super. Pisa Cl. Sci. (III) 12, 55–127 (1958)

    MATH  Google Scholar 

  20. M. Dindoš and M. Mitrea, The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz domains and C 1 domains. Arch. Rational Mech. Anal. 174, 1–47 (2004)

    Article  MATH  Google Scholar 

  21. R.J. Duffin, Analytic continuation in elasticity. J. Rational Mech. Anal. 5, 939–950 (1956)

    MathSciNet  Google Scholar 

  22. L.C. Evans, Partial Differential Equations , AMS, New York (2002)

    Google Scholar 

  23. E.B. Fabes, Layer potential methods for boundary value problems on Lipschitz domains. Lect. Notes Math., Springer–Verlag 1344, 55–80 (1988)

    Article  MathSciNet  Google Scholar 

  24. E.B. Fabes, M. Jodeit Jr. ans J. Lewis, Double layer potentials for domains with corners and edges. Indiana U. Math. J. 26, 95–114 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. E.B. Fabes, M. Jodeit Jr. and N.M. Rivière, Potential techniques for boundary value problems on C 1 domains. Acta Math. 141, 165–185 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. E.B. Fabes, C.E. Kenig and G.C. Verchota, The Dirichlet problem for the Stokes system in Lipschitz domains. Duke Math. J. 57, 769-793 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. E.B. Fabes, O. Mendez and M. Mitrea, Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Farwig, G.P. Galdi and H. Sohr, Very weak solutions and large uniqueness classes of stationary Navier–Stokes equations in bounded domains of ℝ2. J. Diff. Equat. 227, 564–580 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Fichera, Sull’esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all’equilibrio di un corpo elastico. Ann. Sc. Norm. Super. Pisa Cl. Sci. (III) 4, 35–99 (1950)

    MATH  MathSciNet  Google Scholar 

  30. R. Finn, On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Finn and W. Noll, On the uniqueness and non-existence of Stokes flows. Arch. Rational Mech. Anal. 1, 97–106 (1957)

    Article  MathSciNet  Google Scholar 

  32. G.P. Galdi, On the existence of steady motions of a viscous flow with non-homogeneous conditions. Le Matematiche 66, 503–524 (1991)

    MathSciNet  Google Scholar 

  33. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, II revised edition, Springer Tracts in Natural Philosophy (ed. C. Truesdell) 38, 39, Springer–Verlag, New York (1998)

    Google Scholar 

  34. G.P. Galdi, Stationary Navier-Stokes problem in a two-dimensional exterior domain. In Stationary Partial Differential Equations, vol. I, 71–155, Handb. Differ. Equ., North-Holland, Amsterdam (2004)

    Google Scholar 

  35. G.P. Galdi and C.G. Simader, Existence, uniqueness and L q estimates for the Stokes problem in an exterior domain. Arch. Rational Mech. Anal. 112, 291–318 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. G.P. Galdi, C.G. Simader and H. Sohr, On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. (IV) 167, 147–163 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. G.P. Galdi, C.G. Simader and H. Sohr, A class of solutions of stationary Stokes and Navier–Stokes equations with boundary data in \(W^{-1/q,q}(\partial\varOmega)\). Math. Ann. 33 41–74 (2003)

    MathSciNet  Google Scholar 

  38. W. Gao, Layer potentials and boundary value problems for elliptic systems in Lipschitz domains. J. Funct. Anal. 95, 377–399 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

    MATH  MathSciNet  Google Scholar 

  40. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L r –spaces. Math. Z. 178, 287–329 (1981)

    Article  MathSciNet  Google Scholar 

  41. V. Girault and A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Rational Mech. Anal. 114, 313–333 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martin Nijhoff Publishers, Boston (1983)

    Google Scholar 

  43. J.G. Heywood, On Some paradoxes concerning two-dimensional Stokes flow past an obstacle. Indiana Univ. Math. J. 24, 443–450 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  44. N. Kalton and M. Mitrea, Stability results on interpolation scale of quasi-Banach spaces and applications. Trans. Amer. Math. Soc. 350, 3903–3922 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. L.V. Kapitanskii and K. Pileckas, On spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov 159, 5–36 (1983); english transl.: Proc. Math. Inst. Steklov 159, 3–34 (1984)

    Google Scholar 

  46. C.E. Kenig, Harmonic Analysis techniques for second order elliptic boundary value problems. CBMS Regional Conf. Ser. in Math. 83, AMS (1994)

    Google Scholar 

  47. H. Kozono and H. Sohr, On a new class of generalized solutions for the Stokes equations in exterior domains. Ann. Scuola Norm. Sup. Pisa 19, 155–181 (1992)

    MATH  MathSciNet  Google Scholar 

  48. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili and T.V. Burchuladze, Three Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , North-Holland, Amsterdam (1979)

    Google Scholar 

  49. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, London (1969)

    Google Scholar 

  50. J. Leray, Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12 , 1–82 (1933)

    MATH  MathSciNet  Google Scholar 

  51. P. Maremonti and R. Russo, On existence and uniqueness of classical solutions of the stationary Navier–Stokes equations and to the traction problem of linear elastostatics. Quad. Mat. 1, 171–251 (1997)

    MathSciNet  Google Scholar 

  52. P. Maremonti, R. Russo and G. Starita, On the Stokes equations: the boundary value problem. Quad. Mat. 4, 69–140 (1999)

    MathSciNet  Google Scholar 

  53. E. Marušić-Paloka, Solvability of the Navier-Stokes system with L 2 boundary data. Appl. Math. Opt. 41, 365–375 (2000)

    Article  MATH  Google Scholar 

  54. V.G. Maz’ya and G.I. Kresin, On the maximum principle for strongly elliptic and parabolic second order systems with constant coefficients. Math. USSR Sbornic 53, 457–479 (1986)

    Article  MATH  Google Scholar 

  55. Y. Meyer and R.R. Coifman, Wavelet. Calderón–Zygmund and Multilinear Operators , Cambridge University Press, Cambridge (1997)

    Google Scholar 

  56. C. Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali. Mem. Acc. Lincei 7, 303–336 (1965)

    MathSciNet  Google Scholar 

  57. C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, Berlin (1970)

    MATH  Google Scholar 

  58. C. Miranda, Istituzioni di analisi funzionale lineare. Unione Matematica Italiana, Oderisi Gubbio Editrice (1978)

    Google Scholar 

  59. M. Mitrea and M. Taylor, Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  60. J. Naumann, On a maximum principle for weak solutions of the stationary Stokes system. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15(4), 149–168 (1988)

    MATH  MathSciNet  Google Scholar 

  61. S.A. Nazarov and K. Pileckas, On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain. J. Math. Kyoto Univ. 40, 475–492 (2000)

    MATH  MathSciNet  Google Scholar 

  62. J. Nečas, Les Méthodes Directes en Théorie des Équations Élliptiques. Masson, Paris and Academie, Prague (1967)

    Google Scholar 

  63. A. Novotny and M. Padula, Note on decay of solutions of steady Navier-Stokes equations in 3–D exterior domains. Diff. Integr. Eq. 8, 1833–1842 (1995)

    MATH  MathSciNet  Google Scholar 

  64. M. Picone, Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune equazioni lineari alle derivate parziali della fisica–matematica. Ann. Scuola Norm. Sup. Pisa 5(2), 213–288 (1936)

    MATH  MathSciNet  Google Scholar 

  65. K. Pileckas, On space of solenoidal vectors. Trudy Mat. Inst. Steklov 159, 137–149 (1983) english tansl.: Proc. Steklov Math. Inst. 159, 141–154 (1984)

    Google Scholar 

  66. F. Rellich, Darstellung der Eigenwerte von Δu +λu durch ein randintegral. Math. Z. 46, 635–646 (1940)

    Article  MathSciNet  Google Scholar 

  67. R. Russo, On the existence of solutions to the stationary Navier–Stokes equations. Ricerche Mat. 52, 285–348 (2003)

    MATH  MathSciNet  Google Scholar 

  68. R. Russo and C.G. Simader, A note on the existence of solutions to the Oseen problem in Lipschitz domains. J. Math. Fluid Mech. 8, 64–76 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  69. R. Russo and A. Tartaglione, On the Robin problem in classical potential theory. Math. Mod. Meth. Appl. Sci. 11, 1343–1347 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  70. R. Russo and A. Tartaglione, On the Robin problem for Stokes and Navier–Stokes systems. Math. Mod. Meth. Appl. Sci. 16, 701–716 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  71. D. Serre, Équations de Navier–Stokes stationnaire avec données peu regulières. Ann. Sc. Norm. Sup. Pisa 10(4), 543–559 (1982)

    MathSciNet  Google Scholar 

  72. Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains. Proc. Amer. Math. Soc. 123, 801–811 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  73. Y. Shibata and M. Yamazaki, Uniform estimates in the velocity at infinity for stationary solutions to the Navier-Stokes exterior problem. Japanese J. Math. 31, 225–279 (2005)

    MATH  MathSciNet  Google Scholar 

  74. H. Sohr, The Navier–Stokes Equations, Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  75. V.A. Solonnikov, General boundary value problems for Douglis–Niremberg elliptic system II. Trudy Mat. Inst. Steklov 92, 233–297 (1966) english transl.: Proc. Steklov Inst. Math. 92, 212, 272 (1966)

    Google Scholar 

  76. V.A. Solonnikov, On an estimate for the maximum modulus of the solution of a stationary problem for Navier-Stokes equations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 249, 294–302 (1997) english transl.: J. Math. Sci. (New York) 101, 3563–3569 (2000)

    Google Scholar 

  77. E.M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals , Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  78. G.G. Stokes, On the effects of the internal friction of fluids on the motion of pendulus. Trans. Cambridge Phil. Soc. 8, 8–106 (1851)

    Google Scholar 

  79. V. Sverák and T.-P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows. Comm. Part. Diff. Equat. 25, 2107–2117 (2000)

    Article  MATH  Google Scholar 

  80. R. Temam, Navier-Stokes Equations , North-Holland, Amsterdam (1977)

    Google Scholar 

  81. W. Varnhorn, The Stokes Equations , Mathematical Research, vol. 76, Akademie Verlag, Berlin (1994)

    Google Scholar 

  82. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remigio Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russo, R. (2010). On Stokes' Problem. In: Rannacher, R., Sequeira, A. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04068-9_28

Download citation

Publish with us

Policies and ethics