Skip to main content

Towards a Geometrical Multiscale Approach to Non-Newtonian Blood Flow Simulations

  • Chapter
  • First Online:
Advances in Mathematical Fluid Mechanics

Abstract

In this paper we address some problems that arise when modelling the human cardiovascular system. On one hand, blood is a complex fluid and in many situations Newtonian models may not be capable of capturing important aspects of blood rheology, for example its shear-thinning viscosity, viscoelasticity or yield stress. On the other hand, the geometric complexity of the cardiovascular system does not permit the use of full three-dimensional (3D) models in large regions. We deal with these problems by using a relatively simple non-Newtonian model capturing the shear-thinning behaviour of blood in a confined region of interest, and coupling it with a zero dimensional (0D) model (also called lumped parameters model) accounting for the remaining circulatory system. More specifically, the 0D system emulates the global circulation, providing proper boundary conditions to the 3D model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burman, E., Fernández, M.: Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations: space discretization and convergence. Numerische Mathematik 107(1), 39–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fernández, M., Moura, A., Vergara, C.: Defective boundary conditions applied to multiscale analysis of blood flow. In: E. Cancès, J.F. Gerbeau (eds.) CEMRACS 2004 – Mathematics and applications to biology and medicine, Marseille, France, July 26 – September 3, 2004, vol. 14, pp. 89–100. ESAIM: Proceedings (2005)

    Google Scholar 

  3. Formaggia, L., Veneziani, A.: Reduced and multiscale models for the human cardiovascular system. Lecture notes VKI Lecture Series 2003–07, Brussels (2003)

    Google Scholar 

  4. Heywood, J., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids 22, 325–352 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Janela, J.: Mathematical and Numerical Modelling in Hemodynamics and Hemorheology. Ph.D. thesis, Instituto Superior Técnico (2008)

    Google Scholar 

  6. Janela, J., Sequeira, A.: High accuracy semi-analytical solutions for generalized Newtonian flows. In: Proc. of the Conf. on Topical problems in Fluid Mech., Inst. Thermomechanics, Prague (2007)

    Google Scholar 

  7. Kim, S., Cho, Y.I., Jeon, A.H., Hogenauer, B., Kensey, K.R.: A new method for blood viscosity measurements. J. non-Newtonian Fluid Mech. 94, 47–56 (2000)

    Article  MATH  Google Scholar 

  8. Laganà, K., Dubini, G., Migliavacca, F., Pietrabissa, R., Pennati, G., Veneziani, A., Quarteroni, A.: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39, 359–364 (2002)

    Google Scholar 

  9. Moura, A.: The geometrical multiscale modelling of the cardiovascular system: coupling 3D and 1D models. Ph.D. thesis, Politecnico di Milano (2007)

    Google Scholar 

  10. Quarteroni, A., Formaggia., L.: Handbook of Numerical Analysis, vol. XII, chap. Mathematical modelling and numerical simulation of the cardiovascular system. Elsevier, Amsterdam (2002)

    Google Scholar 

  11. Quarteroni, A., Ragni, S., Veneziani, A.: Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4, 111–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Robertson, A., Sequeira, A., Kameneva, M.: Hemorheology. In: G.P. Galdi, R. Rannacher, A. Robertson, S. Turek (eds.) Haemodynamical Flows: Modelling Analysis and Simulation, Oberwolfach Seminars, vol. 37, pp. 63–120. Birkhauser Basel, Switzerland (2008)

    Google Scholar 

  13. Robertson, A., Sequeira, A., Owens, R.G.: Rheological models for blood. In: A. Quarteroni, L. Formaggia, A. Veneziani (eds.) Cardiovascular Mathematics: Modelling and simulation of the cardiovascular system, pp. 211–241. Springer-Verlag, Italia (2009)

    Google Scholar 

  14. Steinman, D., Vorp, D., Ethier, C.: Computational modeling of the arterial biomechanics: insights into pathogenesis and treatment of vascular disease. J. Vasc. Surg. 37, 1118–1128 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélia Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janela, J., Moura, A., Sequeira, A. (2010). Towards a Geometrical Multiscale Approach to Non-Newtonian Blood Flow Simulations. In: Rannacher, R., Sequeira, A. (eds) Advances in Mathematical Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04068-9_18

Download citation

Publish with us

Policies and ethics