Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 634))

Abstract

Model predictive (or sequential approximate) optimization methods find an optimal solution in parallel with predicting the function forms in mathematical models when those forms are not known explicitly in terms of design variables. In this paper, under a dynamic environment with multiple objectives, we propose a model predictive optimization method using computational intelligence in particular support vector regression and the satisficing trade-off method. The effectiveness of the proposed method will be shown along a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a given parameter \(\epsilon > 0,\ {L}^{\epsilon }(z,y,f) = \vert y - f(z){\vert }_{\epsilon } =\max (0,\vert y - f(z)\vert - \epsilon )\).

  2. 2.

    A decision maker may change her/his aspiration level from the one at the previous time t − 1.

References

  • Bryson, A. E. & Ho, Y. (1969). Applied Optimal Control. Blaisdell.

    Google Scholar 

  • Cortes, C. & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.

    Google Scholar 

  • Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press.

    Google Scholar 

  • Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. Wiley.

    Google Scholar 

  • Erenguc, S. S. & Koehler, G. J. (1990). Survey of mathematical programming models and experimental results for linear discriminant analysis. Managerial and Decision Economics, 11, 215–225.

    Article  Google Scholar 

  • Freed, N. & Glover, F. (1981). Simple but powerful goal programming models for discriminant problems. European Journal of Operational Research, 7, 44–60.

    Article  Google Scholar 

  • Glover, F. (1990). Improved linear programming models for discriminant analysis. Decision Sciences, 21, 771–785.

    Article  Google Scholar 

  • Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455–492.

    Article  Google Scholar 

  • Martin, J. D. & Simpson, T. W. (2005). Use of kriging models to approximate deterministic computer models. AIAA Journal, 43(4), 853–863.

    Article  Google Scholar 

  • Montgomery, D. C. (2005). Design and Analysis of Experiments (6th ed.). Wiley.

    Google Scholar 

  • Myers, R. H. & Montgomery, D. C. (2002). Response Surface Methodology (2nd ed.). Wiley.

    Google Scholar 

  • Nakayama, H. & Sawaragi, Y. (1984). Satisficing trade-off method for multi-objective programming. In M. Grauer & A. Wierzbicki (Eds.), Interactive Decision Analysis (pp. 113–122).

    Google Scholar 

  • Nakayama, H. & Yun, Y. (2006). Generating support vector machines using multiobjective optimization and goal programming. In Multi-objective Machine Learning, Springer Series on Studies in Computational Intelligence.

    Google Scholar 

  • Nakayama, H., Yun, Y. B., Asada, T., & Yoon, M. (2005). MOP/GP models for machine learning. European Journal of Operational Research, 66(3), 756–768.

    Article  Google Scholar 

  • Nakayama, H., Yun, Y. B., & Yoon, M. (2009). Sequential Approximate Multiobjective Optimization Using Computational Intelligence. Series in Vector Optimization. Springer.

    Google Scholar 

  • Orr, M. J. L. (1996). Introduction to radial basis function networks. www.cns.ed.ac.uk/people/mark.html.

  • Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of Multiobjective Optimization, (Vol. 176) of Mathematics in Science and Engineering. Academic.

    Google Scholar 

  • Schölkopf, B. & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT.

    Google Scholar 

  • Vapnik, V. (1998). Statistical Learning Theory. Wiley.

    Google Scholar 

  • Yoon, M., Yun, Y. B., & Nakayama, H. (2004). Total margin algorithms in support vector machines. IEICE Transactions on Information and Systems, E87(5), 1223–1230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakayama, H., Yun, Y., Shirakawa, M. (2010). Multi-objective Model Predictive Control. In: Ehrgott, M., Naujoks, B., Stewart, T., Wallenius, J. (eds) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Lecture Notes in Economics and Mathematical Systems, vol 634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04045-0_24

Download citation

Publish with us

Policies and ethics