Advertisement

Using Higher-Order Dynamic Bayesian Networks to Model Periodic Data from the Circadian Clock of Arabidopsis Thaliana

  • Rónán Daly
  • Kieron D. Edwards
  • John S. O’Neill
  • Stuart Aitken
  • Andrew J. Millar
  • Mark Girolami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)

Abstract

Modelling gene regulatory networks in organisms is an important task that has recently become possible due to large scale assays using technologies such as microarrays. In this paper, the circadian clock of Arabidopsis thaliana is modelled by fitting dynamic Bayesian networks to luminescence data gathered from experiments. This work differs from previous modelling attempts by using higher-order dynamic Bayesian networks to explicitly model the time lag between the various genes being expressed. In order to achieve this goal, new techniques in preprocessing the data and in evaluating a learned model are proposed. It is shown that it is possible, to some extent, to model these time delays using a higher-order dynamic Bayesian network.

Keywords

Dynamic Bayesian Network Gene Regulatory Network Gene Expression Arabidopsis Thaliana 

References

  1. 1.
    Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research 35, 391–447 (2009)Google Scholar
  2. 2.
    Daly, R., Shen, Q., Aitken, S.: Learning Bayesian networks: Approaches and issues. The Knowledge Engineering Review (in press, 2009)Google Scholar
  3. 3.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)CrossRefPubMedGoogle Scholar
  4. 4.
    Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4(3), 228–235 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alché Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl. 2), ii138–ii148 (2003)Google Scholar
  6. 6.
    Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Geier, F., Timmer, J., Fleck, C.: Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 1, 11 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Edwards, K.D., Anderson, P.E., Hall, A., Salathia, N.S., Locke, J.C., Lynn, J.R., Straume, M., Smith, J.Q., Millar, A.J.: FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. The Plant Cell 18, 639–650 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Locke, J.C.W., Kozma-Bognár, L., Gould, P.D., Fehér, B., Kevei, É., Nagy, F., Turner, M.S., Hall, A., Millar, A.J.: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular Systems Biology 2(59) (2006)Google Scholar
  10. 10.
    Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modelling. BMC Bioinformatics 8(suppl. 6), S9 (2007)CrossRefGoogle Scholar
  11. 11.
    McClung, C.R.: Plant circadian rhythms. The Plant Cell 18, 792–803 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang, Z., Lib, J., Su, H., Watts, G.S., Chen, H.: Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decision Support Systems 43(4), 1207–1225 (2007)CrossRefGoogle Scholar
  13. 13.
    Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197–243 (1995)Google Scholar
  14. 14.
    Xing, Z., Wu, D.: Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network. In: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops (ICDMW 2006), pp. 190–195 (2006)Google Scholar
  15. 15.
    Steck, H., Jaakkola, T.S.: On the Dirichlet prior and Bayesian regularization. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 697–704. MIT Press, Cambridge (2003)Google Scholar
  16. 16.
    Silander, T., Kontkanen, P., Myllymaki, P.: On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2007 (2007)Google Scholar
  17. 17.
    Kayaalp, M., Cooper, G.F.: A Bayesian network scoring metric that is based on globally uniform parameter priors. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI 2002), pp. 251–258. Morgan Kaufmann, San Francisco (2002)Google Scholar
  18. 18.
    Steck, H.: Learning the Bayesian network structure: Dirichlet prior vs data. In: McAllester, D.A., Myllymäki, P. (eds.) Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI 2008), pp. 511–518. AUAI Press (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rónán Daly
    • 1
  • Kieron D. Edwards
    • 2
  • John S. O’Neill
    • 3
  • Stuart Aitken
    • 4
  • Andrew J. Millar
    • 4
  • Mark Girolami
    • 1
  1. 1.Inference Group, Department of Computing ScienceUniversity of GlasgowUK
  2. 2.Advanced Technologies (Cambridge) LimitedUK
  3. 3.Institute of Metabolic Science, Metabolic Research LaboratoriesUniversity of CambridgeUK
  4. 4.Centre for Systems Biology at EdinburghThe University of EdinburghUK

Personalised recommendations