An Efficient Convex Nonnegative Network Component Analysis for Gene Regulatory Network Reconstruction

  • Jisheng Dai
  • Chunqi Chang
  • Zhongfu Ye
  • Yeung Sam Hung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)


A systems biology problem of reconstructing gene regulatory network from time-course gene expression microarray data via network component analysis (NCA) is investigated in this paper. Inspired by the idea that each column of the connectivity matrix can be estimated independently, we try to propose a fast and stable convex approach for nonnegative NCA (nnNCA). Compared with the existing method, our new method reduces the computational cost substantially, whereas maintains a reasonable accuracy. Both the simulation results and experimental results demonstrate the effectiveness of our method.


Gene regulatory network microarray network component analysis convex programming positivity constraints 


  1. 1.
    Friedman, N., Linial, M., Nachman, I., Peer, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7(3), 601–620 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    Dougherty, E.R., Shmulevich, I., Chen, J., Wang, Z.J.: Genomic Signal Processing and Statistics. Hindawi Publishing Corporation (2005)Google Scholar
  4. 4.
    Alter, O., Brown, P.O.: Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America 97(18), 10101–10106 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee, S.I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4(11), R76 (2003)Google Scholar
  6. 6.
    Liao, J.C., Boscolo, R., Yang, Y.L., Tran, L.M., Sabatti, C., Roychowdhury, V.P.: Network component analysis: Reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America 100(26), 15522–15527 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang, C.Q., Hung, Y.S., Fung, P.C.W., Ding, Z.: Network component analysis for blind source separation. In: Proc. 2006 International Conference on Communications, Circuits and Systems, Guilin, China, pp. 323–326 (2006)Google Scholar
  8. 8.
    Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis for gene regulation networks. In: Proc. 2007 IEEE International Workshop on Machine Learning for Signal Processing, Thesaloniki, Greece, pp. 21–26 (2007)Google Scholar
  9. 9.
    Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    Wang, C., Xuan, J., Chen, L., Zhao, P., Wang, Y., Clarke, R., Hoffman, E.: Motif-directed network component analysis for regulatory network inference. BMC Bioinformatics 9(suppl. 1), S21 (2008)Google Scholar
  11. 11.
    Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 24(11), 1349–1358 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    Chang, C.Q., Ding, Z., Hung, Y.S.: A new optimization algorithm for network component analysis based on convex programming. In: Proc. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan (2009)Google Scholar
  13. 13.
    Chang, C.Q., Ding, Z., Hung, Y.S.: Nonnegative network component analysis by linear programming for gene regulatory network reconstruction. In: Adali, T., et al. (eds.) ICA 2009. LNCS, vol. 5441, pp. 395–402. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading (1976)Google Scholar
  15. 15.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  16. 16.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  17. 17.
    Golub, G.H., van Loan, C.F.: Matrix Computation, 3rd edn. The Johns Hopkins University Press (1996)Google Scholar
  18. 18.
    Lay, D.C.: Linear Algebra and Its Applications, 2nd edn. Addison-Wesley, New York (2000)Google Scholar
  19. 19.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botsein, D., Futcher, B.: Comprehensive identification of cell cycleregulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jisheng Dai
    • 1
    • 2
  • Chunqi Chang
    • 1
  • Zhongfu Ye
    • 2
  • Yeung Sam Hung
    • 1
  1. 1.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong
  2. 2.Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations