Advertisement

MCMC Based Bayesian Inference for Modeling Gene Networks

  • Ramesh Ram
  • Madhu Chetty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)

Abstract

In this paper, we apply Bayesian networks (BN) to infer gene regulatory network (GRN) model from gene expression data. This inference process, consisting of structure search and conditional probability estimation, is challenging due to the size and quality of the data that is currently available. Our previous studies for GRN reconstruction involving evolutionary search algorithm obtained a most plausible graph structure referred as Independence-map (or simply I-map). However, the limitations of the data (large number of genes and less samples) can result in many plausible structures that equally satisfy the data set. In the present study, given the network structures, we estimate the conditional probability distribution of each variable (gene) from the data set to deduce a unique minimal I-map. This is achieved by using Markov Chain Monte Carlo (MCMC) method whereby the search space is iteratively reduced resulting in the required convergence within a reasonable computation time. We present empirical results on both, the synthetic and real-life data sets and also compare our approach with the plain MCMC sampling approach. The inferred minimal I-map on the real-life yeast data set is also presented.

Keywords

Bayesian network gene expression MCMC parameter estimation 

References

  1. 1.
    D’haseleer, P., Liang, S., Somogoyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)CrossRefGoogle Scholar
  2. 2.
    Heckerman, D.: A Tutorial on Learning with Bayesian Networks. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge (1999)Google Scholar
  3. 3.
    Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)Google Scholar
  4. 4.
    Sprites, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search: Adaptive Computation and Machine Learning, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  5. 5.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)CrossRefGoogle Scholar
  6. 6.
    Friedman, N.: Inferring cellular network using probabilistic graphical models. Science 33, 799–805 (2004)CrossRefGoogle Scholar
  7. 7.
    Nachman, I., Friedman, N.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, I248-I256 (2004)CrossRefGoogle Scholar
  8. 8.
    Chickering, D.M.: Learning Equivalence Classes of Bayesian-Network Structures. Journal of Machine Learning Research 2, 445–498 (2002)Google Scholar
  9. 9.
    Friedman, N., Koller, D.: Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50, 95–126 (2003)CrossRefGoogle Scholar
  10. 10.
    de Hoon, S.I., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring Gene Regulatory Networks From Time-Ordered Gene Expression Data Of Bacillus Subtilis Using Differential Equations. In: Pacific symposium on computation biology, vol. 8, pp. 17–28 (2003)Google Scholar
  11. 11.
    Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian networks, in Technical Report. University of California, Berkeley (1999)Google Scholar
  12. 12.
    Madigan, D., Andersson, S., Perlman, M., Volinsky, C.: Bayesian model averaging and model selection for Markov equivalence classes of acyclic graphs. Communications in Statistics: Theory and Methods 25, 2493–2519 (1996)CrossRefGoogle Scholar
  13. 13.
    Madigan, D.a.J.Y.: Bayesian graphical models for discrete data. International statistical Review 63, 215–232 (1995)CrossRefGoogle Scholar
  14. 14.
    Giudici, P.a.P.G.: Decomposable graphical Gaussian model determination. Biometrika 86(4), 785–801 (1999)CrossRefGoogle Scholar
  15. 15.
    Giudici, P., Green, P., Tarantola, C.: Efficient model determination for discrete graphical models, in Technical Report. Univ. Pavia, Italy (2000)Google Scholar
  16. 16.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Henrion, M.: Practical issues in constructing a Bayes belief network. Int. J. Approx. Reasoning 2(3), 337 (1988)Google Scholar
  19. 19.
    Gilks, W.R., Wild, P.: Adaptive Rejective Sampling for Gibbs Sampling. Applied Statistics 41, 337–348 (1992)CrossRefGoogle Scholar
  20. 20.
    Shachter, R.D., Peot, M.A.: Simulation approaches to general probabilistic inference on belief networks. In: Uncertainty in Artificial Intelligence, vol. 5, pp. 221–231 (1989)Google Scholar
  21. 21.
    Ram, R., Chetty, M.: A Guided genetic algorithm for Gene Regulatory Network. In: IEEE Congress on Evolutionary Computation, Singapore (2007)Google Scholar
  22. 22.
    Ram, R., Chetty, M.: Constraint Minimization for Efficient Modeling of Gene Regulatory Network. In: Chetty, M., Ngom, A., Ahmad, S. (eds.) PRIB 2008. LNCS (LNBI), vol. 5265, pp. 201–213. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Ram, R., Chetty, M.: Generating Synthetic Gene Regulatory Networks. In: Chetty, M., Ngom, A., Ahmad, S. (eds.) PRIB 2008. LNCS (LNBI), vol. 5265, pp. 237–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Ram, R., Chetty, M.: A Markov blanket based Probabilistic Genetic Algorithm for Causal Reconstruction of Gene Regulatory Networks. BioSystems Special Issue on Evolving Gene Regulatory Networks (submitted, 2009)Google Scholar
  25. 25.
    Cho, R.J., et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998)CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B., Tyson, J.J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ramesh Ram
    • 1
  • Madhu Chetty
    • 1
  1. 1.Gippsland School of ITMonash University, ChurchillVictoriaAustralia

Personalised recommendations