A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms

  • Juan A. Nepomuceno
  • Alicia Troncoso
  • Jesús S. Aguilar–Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)


In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high–quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.


Biclustering Gene Expression Data Scatter Search Evolutionary Computation 


  1. 1.
    Larranaga, P., et al.: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1), 86–112 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Computers and Operations Research 35(9), 2964–2987 (2008)CrossRefGoogle Scholar
  3. 3.
    Levine, E., Getz, G., Domany, E.: Couple two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences (PNAS) of the USA 97(22), 12079–12084 (2000)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y., Church, G.M.: Biclustering of Expression Data. In: 8th International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  5. 5.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(1), 136–144 (2002)CrossRefGoogle Scholar
  6. 6.
    Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: 3rd IEEE Symposium on Bioinformatics and Bioengineering, pp. 321–327 (2003)Google Scholar
  7. 7.
    Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review E 67(3), 31902 (2003)CrossRefGoogle Scholar
  8. 8.
    Harpaz, R., Haralick, R.: Exploiting the geometry of gene expression patterns for unsupervised learning. In: 18th International Conference on Pattern Recognition (ICPR 2006), pp. 670–674 (2006)Google Scholar
  9. 9.
    Bryan, K., Cunningham, P., Bolshakova, N., Coll, T., Dublin, I.: Biclustering of expression data using simulated annealing. In: 18th IEEE International Symposium on Computer-Based Medical Systems, pp. 383–388 (2005)Google Scholar
  10. 10.
    Divina, F., Aguilar-Ruiz, J.S.: Biclustering of Expression Data with Evolutionary Computation. IEEE Transactions on Knowledge and Data Engineering 18(5), 590–602 (2006)CrossRefGoogle Scholar
  11. 11.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39(12), 2464–2477 (2006)CrossRefGoogle Scholar
  12. 12.
    Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21(20), 3840–3845 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Nepomuceno, J.A., Troncoso, A., Aguilar-Ruiz, J.S., Garcıa-Gutierrez, J.: Biclusters Evaluation Based on Shifting and Scaling Patterns. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 840–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Marti, R., Laguna, M.: Scatter Search. Methodology and Implementation in C. Kluwer Academic Publishers, Boston (2003)Google Scholar
  15. 15.
    Cho, R.J., et al.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell 2(1), 65–73 (1998)CrossRefPubMedGoogle Scholar
  16. 16.
    Alizadeh, A.A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan A. Nepomuceno
    • 1
  • Alicia Troncoso
    • 2
  • Jesús S. Aguilar–Ruiz
    • 2
  1. 1.Department of Computer ScienceUniversity of SevillaSpain
  2. 2.Area of Computer SciencePablo de Olavide University of SevillaSpain

Personalised recommendations